Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120 Germany.
Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120 Germany.
Curr Biol. 2023 Sep 11;33(17):3634-3647.e5. doi: 10.1016/j.cub.2023.07.038. Epub 2023 Aug 11.
To survive in the nutrient-poor waters of the tropics, reef-building corals rely on intracellular, photosynthetic dinoflagellate symbionts. Photosynthates produced by the symbiont are translocated to the host, and this enables corals to form the structural foundation of the most biodiverse of all marine ecosystems. Although the regulation of nutrient exchange between partners is critical for ecosystem stability and health, the mechanisms governing how nutrients are sensed, transferred, and integrated into host cell processes are largely unknown. Ubiquitous among eukaryotes, the mechanistic target of the rapamycin (mTOR) signaling pathway integrates intracellular and extracellular stimuli to influence cell growth and cell-cycle progression and to balance metabolic processes. A functional role of mTOR in the integration of host and symbiont was demonstrated in various nutritional symbioses, and a similar role of mTOR was proposed for coral-algal symbioses. Using the endosymbiosis model Aiptasia, we examined the role of mTOR signaling in both larvae and adult polyps across various stages of symbiosis. We found that symbiosis enhances cell proliferation, and using an Aiptasia-specific antibody, we localized mTOR to symbiosome membranes. We found that mTOR signaling is activated by symbiosis, while inhibition of mTOR signaling disrupts intracellular niche establishment and symbiosis altogether. Additionally, we observed that dysbiosis was a conserved response to mTOR inhibition in the larvae of a reef-building coral species. Our data confim that mTOR signaling plays a pivotal role in integrating symbiont-derived nutrients into host metabolism and symbiosis stability, ultimately allowing symbiotic cnidarians to thrive in challenging environments.
为了在热带贫瘠水域中生存,造礁珊瑚依赖于细胞内的光合甲藻共生体。共生体产生的光合作用产物被转运到宿主中,这使得珊瑚能够形成所有海洋生态系统中生物多样性最丰富的结构基础。尽管营养物质在合作伙伴之间的交换调节对于生态系统的稳定性和健康至关重要,但控制营养物质如何被感知、转移和整合到宿主细胞过程中的机制在很大程度上仍是未知的。机械靶标雷帕霉素(mTOR)信号通路在真核生物中普遍存在,它整合细胞内和细胞外的刺激,影响细胞生长和细胞周期进程,并平衡代谢过程。在各种营养共生中,mTOR 在宿主和共生体的整合中具有功能作用,并且提出 mTOR 对珊瑚-藻类共生具有相似的作用。我们使用共生体模型海葵(Aiptasia),在共生的不同阶段,检查了 mTOR 信号在幼虫和成年水螅体中的作用。我们发现共生作用增强了细胞增殖,并且使用针对 Aiptasia 的特异性抗体,我们将 mTOR 定位到共生体膜上。我们发现共生作用激活了 mTOR 信号,而 mTOR 信号的抑制则破坏了细胞内小生境的建立和共生体的整体形成。此外,我们观察到,在造礁珊瑚幼虫中,mTOR 抑制会引起共生失调,这是一种保守的反应。我们的数据证实,mTOR 信号在将共生体衍生的营养物质整合到宿主代谢和共生体稳定性中起着关键作用,最终使共生刺胞动物能够在具有挑战性的环境中茁壮成长。