Wang Rui, Zhuang Zhihe, Tao Hongfeng, Paszke Wojciech, Stojanovic Vladimir
Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi 214122, China.
Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi 214122, China.
ISA Trans. 2023 Nov;142:123-135. doi: 10.1016/j.isatra.2023.07.043. Epub 2023 Aug 1.
This paper proposes a Q-learning based fault estimation (FE) and fault tolerant control (FTC) scheme under iterative learning control (ILC) framework. Due to the repetitive demands on control actuators for repetitive tasks, ILC is sensitive to actuator faults. Moreover, unknown faults varying with both time and trial axes pose a challenge to the control performance of ILC. This paper introduces Q-learning algorithm for FE to continuously adjust the estimator and adapt the changing faults. Then, FTC is designed by adopting the norm-optimal iterative learning control (NOILC) framework, where the controller is adjusted based on the FE results from Q-learning to counteract the influence of faults. Finally, the simulation on the plant of a mobile robot verifies the effectiveness of the proposed algorithm.
本文提出了一种基于Q学习的故障估计(FE)和容错控制(FTC)方案,该方案处于迭代学习控制(ILC)框架之下。由于对重复任务的控制执行器有重复要求,ILC对执行器故障很敏感。此外,随时间和试验轴变化的未知故障对ILC的控制性能构成挑战。本文引入用于故障估计的Q学习算法,以不断调整估计器并适应变化的故障。然后,采用范数最优迭代学习控制(NOILC)框架设计容错控制,其中基于Q学习的故障估计结果调整控制器,以抵消故障的影响。最后,在移动机器人装置上的仿真验证了所提算法的有效性。