Suppr超能文献

营养和代谢负担的预测潜力:开发一种新的经过验证的指标,预测成人脊柱畸形手术中术后并发症的增加。

The Predictive Potential of Nutritional and Metabolic Burden: Development of a Novel Validated Metric Predicting Increased Postoperative Complications in Adult Spinal Deformity Surgery.

机构信息

Departments of Orthopedic and Neurological Surgery, NYU Langone Orthopedic Hospital, New York Spine Institute, New York, NY.

Department of Orthopedic Surgery, New York Medical College, Westchester Medical Center, Valhalla, NY.

出版信息

Spine (Phila Pa 1976). 2024 May 1;49(9):609-614. doi: 10.1097/BRS.0000000000004797. Epub 2023 Aug 10.

Abstract

STUDY DESIGN

A retrospective cohort review.

OBJECTIVE

To develop a scoring system for predicting increased risk of postoperative complications in adult spinal deformity (ASD) surgery based on baseline nutritional and metabolic factors.

BACKGROUND

Endocrine and metabolic conditions have been shown to adversely influence patient outcomes and may increase the likelihood of postoperative complications. The impact of these conditions has not been effectively evaluated in patients undergoing ASD surgery.

MATERIALS AND METHODS

ASD patients 18 years or above with baseline and two-year data were included. An internally cross-validated weighted equation using preoperative laboratory and comorbidity data correlating to increased perioperative complications was developed via Poisson regression. Body mass index (BMI) categorization (normal, over/underweight, and obese) and diabetes classification (normal, prediabetic, and diabetic) were used per the Centers for Disease Control and Prevention and the American Diabetes Associates parameters. A novel ASD-specific nutritional and metabolic burden score (ASD-NMBS) was calculated via Beta-Sullivan adjustment, and Conditional Inference Tree determined the score threshold for experiencing ≥1 complication. Cohorts were stratified into low-risk and high-risk groups for comparison. Logistic regression assessed correlations between increasing burden score and complications.

RESULTS

Two hundred one ASD patients were included (mean age: 58.60±15.4, sex: 48% female, BMI: 29.95±14.31, Charlson Comorbidity Index: 3.75±2.40). Significant factors were determined to be age (+1/yr), hypertension (+18), peripheral vascular disease (+37), smoking status (+21), anemia (+1), VitD hydroxyl (+1/ng/mL), BMI (+13/cat), and diabetes (+4/cat) (model: P <0.001, area under the curve: 92.9%). Conditional Inference Tree determined scores above 175 correlated with ≥1 post-op complication ( P <0.001). Furthermore, HIGH patients reported higher rates of postoperative cardiac complications ( P =0.045) and were more likely to require reoperation ( P =0.024) compared with low patients.

CONCLUSIONS

The development of a validated novel nutritional and metabolic burden score (ASD-NMBS) demonstrated that patients with higher scores are at greater risk of increased postoperative complications and course. As such, surgeons should consider the reduction of nutritional and metabolic burden preoperatively to enhance outcomes and reduce complications in ASD patients.

摘要

研究设计

回顾性队列研究。

目的

基于基线营养和代谢因素,建立一个预测成人脊柱畸形(ASD)手术术后并发症风险增加的评分系统。

背景

内分泌和代谢状况已被证明会对患者的预后产生不利影响,并可能增加术后并发症的可能性。这些情况在接受 ASD 手术的患者中尚未得到有效评估。

材料和方法

纳入了年龄在 18 岁及以上、具有基线和两年数据的 ASD 患者。通过泊松回归,利用术前实验室和合并症数据与围手术期并发症增加相关的加权方程进行了内部交叉验证。体重指数(BMI)分类(正常、超重/消瘦和肥胖)和糖尿病分类(正常、糖尿病前期和糖尿病)按照疾病控制和预防中心以及美国糖尿病协会的参数进行。通过贝塔-沙利文调整计算了一种新的 ASD 特异性营养和代谢负担评分(ASD-NMBS),条件推断树确定了经历≥1 种并发症的评分阈值。将队列分为低风险和高风险组进行比较。Logistic 回归评估了负担评分增加与并发症之间的相关性。

结果

共纳入 201 例 ASD 患者(平均年龄:58.60±15.4,性别:48%为女性,BMI:29.95±14.31,Charlson 合并症指数:3.75±2.40)。确定的显著因素为年龄(每增加 1 岁)、高血压(增加 18)、外周血管疾病(增加 37)、吸烟状况(增加 21)、贫血(增加 1)、维生素 D 羟基(增加 1/ng/mL)、BMI(增加 13/类别)和糖尿病(增加 4/类别)(模型:P<0.001,曲线下面积:92.9%)。条件推断树确定评分高于 175 与≥1 种术后并发症相关(P<0.001)。此外,与低风险患者相比,HIGH 患者报告的术后心脏并发症发生率更高(P=0.045),更有可能需要再次手术(P=0.024)。

结论

开发了一种经过验证的新型营养和代谢负担评分(ASD-NMBS),表明评分较高的患者术后并发症和病程的风险增加。因此,外科医生应考虑在术前减少营养和代谢负担,以改善 ASD 患者的预后并减少并发症。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验