School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA.
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Biochem Biophys Res Commun. 2023 Oct 15;677:126-131. doi: 10.1016/j.bbrc.2023.08.015. Epub 2023 Aug 9.
Human pancreatic cancer cell lines harbor a small population of tumor repopulating cells (TRCs). Soft 3D fibrin gel allows efficient selection and growth of these tumorigenic TRCs. However, rapid and high-throughput identification and classification of pancreatic TRCs remain technically challenging. Here, we developed deep learning (DL) models paired with machine learning (ML) models to readily identify and classify 3D fibrin gel-selected TRCs into sub-types. Using four different human pancreatic cell lines, namely, MIA PaCa-2, PANC-1, CFPAC-1, and HPAF-II, we classified 3 main sub-types to be present within the TRC population. Our best model was an Inception-v3 convolutional neural network (CNN) used as a feature extractor paired with a Support Vector Machine (SVM) classifier with radial basis function (rbf) kernel which obtained a test accuracy of 90%. In addition, we compared this hybrid method of supervised classification with other methods of supervised classifications and showed that our working model outperforms others. With the help of unsupervised machine learning algorithms, we also validated that the pancreatic TRC subpopulation can be clustered into 3 sub-types. Collectively, our robust model can detect and readily classify tumorigenic TRC subpopulation label-free in a high-throughput fashion which can be very beneficial in clinical settings.
人类胰腺癌细胞系中存在一小部分肿瘤再生细胞(TRC)。柔软的 3D 纤维蛋白凝胶允许这些致瘤性 TRC 的有效选择和生长。然而,快速和高通量鉴定和分类胰腺 TRC 在技术上仍然具有挑战性。在这里,我们开发了深度学习(DL)模型,并与机器学习(ML)模型相结合,以便于将 3D 纤维蛋白凝胶选择的 TRC 识别和分类为亚类。使用四种不同的人胰腺细胞系,即 MIA PaCa-2、PANC-1、CFPAC-1 和 HPAF-II,我们将 TRC 群体中的 3 个主要亚类进行了分类。我们最好的模型是 Inception-v3 卷积神经网络(CNN),用作特征提取器,与带有径向基函数(rbf)核的支持向量机(SVM)分类器配对,测试准确率为 90%。此外,我们将这种监督分类的混合方法与其他监督分类方法进行了比较,结果表明我们的工作模型表现优于其他方法。借助无监督机器学习算法,我们还验证了胰腺 TRC 亚群可以聚类为 3 个亚群。总的来说,我们的稳健模型可以在高通量方式下无标签地检测和分类肿瘤再生细胞亚群,这在临床环境中非常有益。