Suppr超能文献

量子理论只有在拉扎尔·卡诺的参与式工程热力学(莱布尼茨动力学的一种发展)中才有意义。

Quantum theory only makes sense in Lazare Carnot's participatory engineering thermodynamics, a development of Leibniz's dynamics.

作者信息

Bristol Terry

机构信息

Institute for Science, Engineering and Public Policy, Portland State University, Portland, OR 97006, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2023 Oct 2;381(2256):20220287. doi: 10.1098/rsta.2022.0287. Epub 2023 Aug 14.

Abstract

Feynman insisted 'no one understands quantum theory'. Yet, experimentalists tell us quantum theory is the most successful theory in history. Quantum theory cannot be understood as a classical mechanical theory since it arose through the 'interpolation' of two highly successful but complementary classical mechanics: Newtonian particle mechanics and Maxwellian wave mechanics. The two-slit experiment illustrates that what is experienced depends on choice of experimental set-up. Quantum theory is properly understood within the more general framework of engineering thermodynamics. In Part One, I point to four essential characteristics of quantum theory that cannot be understood in any framework defined by the classical mechanical presuppositions of symmetry and conservation. These four characteristics are the participatory, the complementary, the indeterminate and the new non-commutative geometry. In Part Two, articulating engineering thermodynamics, I note there are two histories and two formulations of thermodynamics: Carnot's engineering thermodynamics and the 'rational mechanical' tradition of Clausius-Boltzmann. These four essential characteristics of quantum theory are also characteristics of engineering thermodynamics. In Part Three, I trace the precursors of Lazare Carnot's engineering thermodynamics to earlier insights of Huygens, d'Alembert, Leibniz and the Bernoullis. Leibniz brought these forth in his meta-paradigm shift from Statics to Dynamics. This article is part of the theme issue 'Thermodynamics 2.0: Bridging the natural and social sciences (Part 2)'.

摘要

费曼坚持认为“没有人理解量子理论”。然而,实验学家告诉我们,量子理论是历史上最成功的理论。量子理论不能被理解为经典力学理论,因为它是通过对两个非常成功但相互补充的经典力学进行“插值”而产生的:牛顿粒子力学和麦克斯韦波动力学。双缝实验表明,所经历的结果取决于实验装置的选择。量子理论在工程热力学这个更一般的框架内才能得到恰当的理解。在第一部分,我指出了量子理论的四个基本特征,这些特征在由对称性和守恒性的经典力学预设所定义的任何框架中都无法理解。这四个特征是参与性、互补性、不确定性和新的非对易几何。在第二部分阐述工程热力学时,我注意到有两种热力学的历史和两种表述:卡诺的工程热力学以及克劳修斯 - 玻尔兹曼的“理性力学”传统。量子理论的这四个基本特征也是工程热力学的特征。在第三部分,我将拉扎尔·卡诺的工程热力学的先驱追溯到惠更斯、达朗贝尔、莱布尼茨和伯努利家族早期的见解。莱布尼茨在从静力学向动力学的元范式转变中提出了这些见解。本文是主题为“热力学2.0:连接自然科学与社会科学(第二部分)”的一部分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验