Suppr超能文献

具有延迟位置约束和未知类间隙滞后的机器人系统的基于事件的自适应跟踪控制

Event-based adaptive tracking control for robotic systems with deferred position constraints and unknown backlash-like hysteresis.

作者信息

Hao Siwen, Pan Yingnan, Zhu Yuting, Cao Liang

机构信息

College of Control Science and Engineering, Bohai University, Jinzhou, 121013, Liaoning, China.

College of Mathematical Sciences, Bohai University, Jinzhou 121013, Liaoning, China.

出版信息

ISA Trans. 2023 Nov;142:289-298. doi: 10.1016/j.isatra.2023.08.004. Epub 2023 Aug 5.

Abstract

This paper proposes an event-based adaptive tracking control scheme for the n-link robotic systems in the presence of unknown backlash-like hysteresis (BLH) and deferred position constraints. By combining a transformation error with an asymmetric Lyapunov function, the devised control tactic achieves that the position constraints of robotic systems are not violated after user pre-specified time. In contrast to the results of robotic systems with position constraints, this paper removes a common assumption condition generated by the conventional barrier Lyapunov function method. Then, the adverse effect of unknown BLH can be offset by the Nussbaum function. Meanwhile, an event-triggered mechanism is designed to economize on the network bandwidth resources. Finally, based on the Lyapunov theory, an event-based adaptive tracking control tactic is proposed to ensure that all the signals of robotic systems are bounded under unknown BLH and deferred position constraints. Some simulation results proof that the devised control scheme is valid.

摘要

本文针对存在未知类间隙滞后(BLH)和延迟位置约束的n连杆机器人系统,提出了一种基于事件的自适应跟踪控制方案。通过将变换误差与非对称Lyapunov函数相结合,所设计的控制策略实现了在用户预先指定的时间之后,机器人系统的位置约束不会被违反。与具有位置约束的机器人系统的结果相比,本文去除了传统障碍Lyapunov函数方法产生的一个常见假设条件。然后,未知BLH的不利影响可以通过Nussbaum函数来抵消。同时,设计了一种事件触发机制以节省网络带宽资源。最后,基于Lyapunov理论,提出了一种基于事件的自适应跟踪控制策略,以确保在未知BLH和延迟位置约束下机器人系统的所有信号都是有界的。一些仿真结果证明了所设计的控制方案是有效的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验