Suppr超能文献

负载型金属纳米团簇的尺寸依赖性扩散:多面体团簇的平均场类型处理及其他方法

Size-dependent diffusion of supported metal nanoclusters: mean-field-type treatments and beyond for faceted clusters.

作者信息

Lai King C, Campbell Charles T, Evans James W

机构信息

Division of Chemical & Biological Sciences, Ames National Laboratory - USDOE, Ames, Iowa 50011, USA.

Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011, USA.

出版信息

Nanoscale Horiz. 2023 Oct 23;8(11):1556-1567. doi: 10.1039/d3nh00140g.

Abstract

Nanostructured systems are intrinsically metastable and subject to coarsening. For supported 3D metal nanoclusters (NCs), coarsening can involve NC diffusion across the support and subsequent coalescence (as an alternative to Ostwald ripening). When used as catalysts, this leads to deactivation. The dependence of diffusivity, , on NC size, (in atoms), controls coarsening kinetics. Traditional mean-field (MF) theory for assumes that NC diffusion is mediated by independent random hopping of surface adatoms with low coordination, and predicts that ∼ . Here, = exp[-/()] denotes the hop rate, and = exp[-/()] the density of those adatoms. The adatom formation energy, , approaches a finite large- limit, as does the effective barrier, = + , for NC diffusion. This MF theory is critically assessed for a realistic stochastic atomistic model for diffusion of faceted fcc metal NCs with a {100} facet epitaxially attached to a (100) support surface. First, the MF formulation is refined to account for distinct densities and hop rates for surface adatoms on different facets and along the base contact line, and to incorporate the exact values of and for our model. MF theory then captures the occurrence of local minima in at closed-shell sizes, as shown by KMC simulation. However, the MF treatment also displays fundamental shortcomings due to the feature that diffusion of faceted NCs is actually dominated by a cooperative multi-step process involving disassembling and reforming of outer layers on side facets. This mechanism leads to an which is well above MF values, and which increases with , features captured by a beyond-MF treatment.

摘要

纳米结构系统本质上是亚稳态的,容易发生粗化。对于负载型三维金属纳米团簇(NCs),粗化可能涉及NCs在载体上的扩散以及随后的聚并(作为奥斯特瓦尔德熟化的一种替代方式)。当用作催化剂时,这会导致失活。扩散率 对NC尺寸 (以原子数计)的依赖性控制着粗化动力学。传统的平均场(MF)理论假设NC扩散是由低配位表面吸附原子的独立随机跳跃介导的,并预测 ∼ 。这里, = exp[-/()]表示跳跃速率, = exp[-/()]表示那些吸附原子的密度。吸附原子形成能 接近一个有限的大尺寸极限,NC扩散的有效势垒 = + 也是如此。针对具有{100}面外延附着在(100)载体表面的多面体fcc金属NCs扩散的实际随机原子模型,对该MF理论进行了严格评估。首先,对MF公式进行了改进,以考虑不同晶面和沿基底接触线的表面吸附原子的不同密度和跳跃速率,并纳入我们模型中 和 的精确值。然后,MF理论捕捉到了如KMC模拟所示的在闭壳尺寸下 中局部最小值的出现。然而,由于多面体NCs的扩散实际上由涉及侧面外层拆卸和重新形成的协同多步过程主导这一特征,MF处理也显示出基本缺陷。这种机制导致 远高于MF值,并且随 增加,这是超越MF处理所捕捉到的特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验