Suppr超能文献

利用污水监测对社区中流感 A 进行监测和解释的替代方法。

An alternative method for monitoring and interpreting influenza A in communities using wastewater surveillance.

机构信息

Faculty of Science, Ontario Tech University, Oshawa, ON, Canada.

出版信息

Front Public Health. 2023 Jul 27;11:1141136. doi: 10.3389/fpubh.2023.1141136. eCollection 2023.

Abstract

Seasonal influenza is an annual public health challenge that strains healthcare systems, yet population-level prevalence remains under-reported using standard clinical surveillance methods. Wastewater surveillance (WWS) of influenza A can allow for reliable flu surveillance within a community by leveraging existing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) WWS networks regardless of the sample type (primary sludge vs. primary influent) using an RT-qPCR-based viral RNA detection method for both targets. Additionally, current influenza A outbreaks disproportionately affect the pediatric population. In this study, we show the utility of interpreting influenza A WWS data with elementary student absenteeism due to illness to selectively interpret disease spread in the pediatric population. Our results show that the highest statistically significant correlation (R = 0.96, = 0.011) occurred between influenza A WWS data and elementary school absences due to illness. This correlation coefficient is notably higher than the correlations observed between influenza A WWS data and influenza A clinical case data (R = 0.79, = 0.036). This method can be combined with a suite of pathogen data from wastewater to provide a robust system for determining the causative agents of diseases that are strongly symptomatic in children to infer pediatric outbreaks within communities.

摘要

季节性流感是一项年度公共卫生挑战,给医疗体系带来压力,但使用标准临床监测方法,人群水平的患病率仍报告不足。通过利用现有的严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 废水监测网络,即使使用基于 RT-qPCR 的病毒 RNA 检测方法针对两种目标物,废水监测(WWS)也可以可靠地监测社区内的流感,而与样本类型(初沉污泥与原水)无关。此外,当前的流感 A 暴发不成比例地影响儿科人群。在这项研究中,我们展示了利用因疾病而缺课的小学生缺勤率来解释流感 A WWS 数据的实用性,以选择性地解释儿科人群中的疾病传播。我们的结果表明,流感 A WWS 数据与因疾病而缺勤的小学生之间存在最高的统计学显著相关性(R = 0.96, = 0.011)。这个相关系数明显高于流感 A WWS 数据与流感 A 临床病例数据之间观察到的相关性(R = 0.79, = 0.036)。这种方法可以与废水病原体数据套件相结合,为确定在儿童中症状强烈的疾病的病原体提供一个强大的系统,以推断社区内的儿科暴发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验