Lopes de Oliveira Guilherme, Ferreira Andrêa J F, Teles Carlos Antônio de S S, Paixao Enny S, Fiaccone Rosemeire, Lana Raquel, Aquino Rosana, Cardoso Andrey Moreira, Soares Maria Auxiliadora, Oliveira Dos Santos Idália, Pereira Marcos, Barreto Maurício L, Ichihara Maria Yury
Centre of Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fiocruz, Salvador, Bahia, Brazil.
Department of Computing, Federal Centre of Technological Education of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Lancet Reg Health Am. 2023 Aug 1;25:100564. doi: 10.1016/j.lana.2023.100564. eCollection 2023 Sep.
Although several studies have estimated gestational syphilis (GS) incidence in several countries, underreporting correction is rarely considered. This study aimed to estimate the level of under-registration and correct the GS incidence rates in the 557 Brazilian microregions.
Brazilian GS notifications between 2007 and 2018 were obtained from the SINAN-Syphilis system. A cluster analysis was performed to group microregions according to the quality of GS notification. A Bayesian hierarchical Poisson regression model was applied to estimate the reporting probabilities among the clusters and to correct the associated incidence rates.
We estimate that 45,196 (90%-HPD: 13,299; 79,310) GS cases were underreported in Brazil from 2007 to 2018, representing a coverage of 87.12% (90%-HPD: 79.40%; 95.83%) of registered cases, where HPD stands for the Bayesian highest posterior density credible interval. Underreporting levels differ across the country, with microregions in North and Northeast regions presenting the highest percentage of missed cases. After underreporting correction, Brazil's estimated GS incidence rate increased from 8.74 to 10.02 per 1000 live births in the same period.
Our findings highlight disparities in the registration level and incidence rate of GS in Brazil, reflecting regional heterogeneity in the quality of syphilis surveillance, access to prenatal care, and childbirth assistance services. This study provides robust evidence to enhance national surveillance systems, guide specific policies for GS detection disease control, and potentially mitigate the harmful consequences of mother-to-child transmission. The methodology might be applied in other regions to correct disease underreporting.
National Council for Scientific and Technological Development; The Bill Melinda Gates Foundation and Wellcome Trust.
尽管多项研究已估算出多个国家的妊娠期梅毒(GS)发病率,但很少考虑对漏报情况进行校正。本研究旨在估算巴西557个微区域的登记不足水平,并校正GS发病率。
从SINAN - 梅毒系统获取2007年至2018年巴西的GS报告。进行聚类分析,根据GS报告质量对微区域进行分组。应用贝叶斯分层泊松回归模型估算各聚类中的报告概率,并校正相关发病率。
我们估计,2007年至2018年巴西有45,196例(90%最高后验密度可信区间:13,299;79,310)GS病例漏报,占登记病例的87.12%(90%最高后验密度可信区间:79.40%;95.83%),其中最高后验密度可信区间代表贝叶斯最高后验密度可信区间。全国漏报水平存在差异,北部和东北部地区的微区域漏报病例百分比最高。校正漏报后,同期巴西估计的GS发病率从每1000例活产8.74例增至10.02例。
我们的研究结果凸显了巴西GS登记水平和发病率的差异,反映出梅毒监测质量、获得产前护理及分娩辅助服务方面的区域异质性。本研究为加强国家监测系统、指导GS检测及疾病控制的具体政策并潜在减轻母婴传播的有害后果提供了有力证据。该方法可应用于其他地区以校正疾病漏报情况。
国家科学技术发展委员会;比尔及梅琳达·盖茨基金会和惠康信托基金会。