Suppr超能文献

使用投影预测特征选择识别临床结果的预测因素——以克罗恩病为例的概念验证

Identifying predictors of clinical outcomes using the projection-predictive feature selection-a proof of concept on the example of Crohn's disease.

作者信息

Wirthgen Elisa, Weber Frank, Kubickova-Weber Laura, Schiller Benjamin, Schiller Sarah, Radke Michael, Däbritz Jan

机构信息

Department of Pediatrics, Rostock University Medical Center, Rostock, Germany.

Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany.

出版信息

Front Pediatr. 2023 Jul 28;11:1170563. doi: 10.3389/fped.2023.1170563. eCollection 2023.

Abstract

OBJECTIVES

Several clinical disease activity indices (DAIs) have been developed to noninvasively assess mucosal healing in pediatric Crohn's disease (CD). However, their clinical application can be complex. Therefore, we present a new way to identify the most informative biomarkers for mucosal inflammation from current markers in use and, based on this, how to obtain an easy-to-use DAI for clinical practice. A further aim of our proof-of-concept study is to demonstrate how the performance of such a new DAI can be compared to that of existing DAIs.

METHODS

The data of two independent study cohorts, with 167 visits from 109 children and adolescents with CD, were evaluated retrospectively. A variable selection based on a Bayesian ordinal regression model was applied to select clinical or standard laboratory parameters as predictors, using an endoscopic outcome. The predictive performance of the resulting model was compared to that of existing pediatric DAIs.

RESULTS

With our proof-of-concept dataset, the resulting model included C-reactive protein (CRP) and fecal calprotectin (FC) as predictors. In general, our model performed better than the existing DAIs. To show how our Bayesian approach can be applied in practice, we developed a web application for predicting disease activity for a new CD patient or visit.

CONCLUSIONS

Our work serves as a proof-of-concept, showing that the statistical methods used here can identify biomarkers relevant for the prediction of a clinical outcome. In our case, a small number of biomarkers is sufficient, which, together with the web interface, facilitates the clinical application. However, the retrospective nature of our study, the rather small amount of data, and the lack of an external validation cohort do not allow us to consider our results as the establishment of a novel DAI for pediatric CD. This needs to be done with the help of a prospective study with more data and an external validation cohort in the future.

摘要

目的

已开发出多种临床疾病活动指数(DAIs)用于无创评估儿童克罗恩病(CD)的黏膜愈合情况。然而,它们的临床应用可能较为复杂。因此,我们提出一种新方法,从当前使用的标志物中识别出对黏膜炎症最具信息量的生物标志物,并据此获得一种便于临床实践使用的DAI。我们这项概念验证研究的另一个目的是展示这种新DAI的性能如何与现有DAIs进行比较。

方法

回顾性评估了两个独立研究队列的数据,这些数据来自109名患有CD的儿童和青少年的167次就诊。基于贝叶斯序贯回归模型进行变量选择,以选择临床或标准实验室参数作为预测指标,并以内镜检查结果作为依据。将所得模型的预测性能与现有的儿科DAIs进行比较。

结果

在我们的概念验证数据集中,所得模型纳入了C反应蛋白(CRP)和粪便钙卫蛋白(FC)作为预测指标。总体而言,我们的模型比现有DAIs表现更好。为展示我们的贝叶斯方法如何在实际中应用,我们开发了一个网络应用程序,用于预测新的CD患者或就诊的疾病活动情况。

结论

我们的工作作为一项概念验证,表明此处使用的统计方法能够识别与临床结果预测相关的生物标志物。在我们的案例中,少量的生物标志物就足够了,这与网络界面一起便于临床应用。然而,我们研究的回顾性性质、相对较少的数据量以及缺乏外部验证队列,使得我们不能将结果视为建立了一种用于儿童CD的新型DAI。这需要在未来通过一项有更多数据且有外部验证队列的前瞻性研究来完成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3dc/10420065/b1355e68550b/fped-11-1170563-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验