Department of Pediatrics, Rostock University Medical Center, Rostock, Germany.
Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany.
Eur J Pediatr. 2024 Aug;183(8):3277-3288. doi: 10.1007/s00431-024-05554-y. Epub 2024 May 6.
Especially for pediatric patients, proxies of mucosal inflammation are needed. The Pediatric Ulcerative Colitis Activity Index (PUCAI) has been established to predict clinical and endoscopic disease activity. However, histologic inflammation might persist. We applied a special variable selection technique to predict histologic healing in pediatric ulcerative colitis (UC) as parsimoniously (but still as precisely) as possible. The retrospective analysis included data from two study cohorts, comprising 91 visits from 59 pediatric patients with UC. A Bayesian ordinal regression model was used in combination with a projection-predictive feature selection (PPFS) to identify a minimal subset of clinical and laboratory parameters sufficient for the prediction of histologic disease activity. Following the PPFS, CEDATA-GPGE patient registry data were analyzed to investigate the relevance of the selected predictors in relation to PUCAI and Physician Global Assessment (PGA) in up to 6697 patient visits. Fecal calprotectin (FC) and platelet count were identified as the minimal subset of predictors sufficient for prediction of histologic disease activity in pediatric UC. FC and platelet count also appeared to be associated with increasing disease activity as measured by PUCAI and PGA in the CEDATA-GPGE registry. Based on the selected model, predictions can be performed with a Shiny web app. Conclusion: Our statistical approach constitutes a reproducible and objective tool to select a minimal subset of the most informative parameters to predict histologic inflammation in pediatric UC. A Shiny app shows how physicians may predict the histologic activity in a user-friendly way using FC and platelet count. To generalize the findings, further prospective studies will be needed. What is Known: • Histologic healing is a major endpoint in the therapy of ulcerative colitis (UC). • The PUCAI score has been established to predict disease activity in pediatric UC but is not suitable for the prediction of histologic healing. What is New: • Our Bayesian ordinal regression model in combination with a projection-predictive feature selection is a reproducible and objective tool to select the minimal subset of clinical and laboratory parameters to predict histologic inflammation in pediatric UC. • Histologic inflammation in pediatric UC can be non-invasively predicted based on the combination of fecal calprotectin levels and platelet count.
特别是对于儿科患者,需要评估黏膜炎症的替代指标。儿科溃疡性结肠炎活动指数(PUCAI)已被建立用于预测临床和内镜疾病活动。然而,组织学炎症可能持续存在。我们应用了一种特殊的变量选择技术,尽可能精确地预测儿科溃疡性结肠炎(UC)的组织学愈合。这项回顾性分析纳入了来自两个研究队列的数据,包括 59 例 UC 患儿的 91 次就诊。采用贝叶斯有序回归模型结合投影预测特征选择(PPFS),以尽可能精确地确定用于预测组织学疾病活动的最小临床和实验室参数子集。在 PPFS 之后,我们分析了 CEDATA-GPGE 患者登记数据,以研究所选预测因子与 PUCAI 和医师整体评估(PGA)之间的相关性,共分析了多达 6697 次就诊的数据。粪便钙卫蛋白(FC)和血小板计数被确定为预测儿科 UC 组织学疾病活动的最小预测因子。在 CEDATA-GPGE 登记处,FC 和血小板计数似乎也与 PUCAI 和 PGA 测量的疾病活动增加相关。基于所选模型,可以使用 Shiny 网络应用程序进行预测。结论:我们的统计方法是一种可重复和客观的工具,可用于选择预测儿科 UC 组织学炎症的最具信息量参数的最小子集。Shiny 应用程序展示了如何使用 FC 和血小板计数以用户友好的方式预测组织学活动。为了推广这些发现,还需要进一步的前瞻性研究。已知:•组织学愈合是溃疡性结肠炎(UC)治疗的主要终点。•PUCAI 评分已被建立用于预测儿科 UC 的疾病活动,但不适合预测组织学愈合。新发现:•我们的贝叶斯有序回归模型结合投影预测特征选择是一种可重复和客观的工具,用于选择预测儿科 UC 组织学炎症的最小临床和实验室参数子集。•基于粪便钙卫蛋白水平和血小板计数的组合,可以非侵入性地预测儿科 UC 的组织学炎症。