Suppr超能文献

五种对肝细胞癌具有最佳性能的基于基因的关键生物标志物。

Five Critical Gene-Based Biomarkers With Optimal Performance for Hepatocellular Carcinoma.

作者信息

Liu Yongjun, Zhang Heping, Xu Yuqing, Liu Yao-Zhong, Al-Adra David P, Yeh Matthew M, Zhang Zhengjun

机构信息

Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA.

Yale School of Public Health, Yale University, New Haven, CT, USA.

出版信息

Cancer Inform. 2023 Aug 9;22:11769351231190477. doi: 10.1177/11769351231190477. eCollection 2023.

Abstract

Hepatocellular carcinoma (HCC) is one of the most fatal cancers in the world. There is an urgent need to understand the molecular background of HCC to facilitate the identification of biomarkers and discover effective therapeutic targets. Published transcriptomic studies have reported a large number of genes that are individually significant for HCC. However, reliable biomarkers remain to be determined. In this study, built on max-linear competing risk factor models, we developed a machine learning analytical framework to analyze transcriptomic data to identify the most miniature set of differentially expressed genes (DEGs). By analyzing 9 public whole-transcriptome datasets (containing 1184 HCC samples and 672 nontumor controls), we identified 5 critical differentially expressed genes (DEGs) (ie, CCDC107, CXCL12, GIGYF1, GMNN, and IFFO1) between HCC and control samples. The classifiers built on these 5 DEGs reached nearly perfect performance in identification of HCC. The performance of the 5 DEGs was further validated in a US Caucasian cohort that we collected (containing 17 HCC with paired nontumor tissue). The conceptual advance of our work lies in modeling gene-gene interactions and correcting batch effect in the analytic framework. The classifiers built on the 5 DEGs demonstrated clear signature patterns for HCC. The results are interpretable, robust, and reproducible across diverse cohorts/populations with various disease etiologies, indicating the 5 DEGs are intrinsic variables that can describe the overall features of HCC at the genomic level. The analytical framework applied in this study may pave a new way for improving transcriptome profiling analysis of human cancers.

摘要

肝细胞癌(HCC)是世界上最致命的癌症之一。迫切需要了解HCC的分子背景,以促进生物标志物的识别并发现有效的治疗靶点。已发表的转录组学研究报告了大量对HCC具有个体显著性的基因。然而,可靠的生物标志物仍有待确定。在本研究中,基于最大线性竞争风险因子模型,我们开发了一个机器学习分析框架来分析转录组数据,以识别差异表达基因(DEG)的最精简集。通过分析9个公共全转录组数据集(包含1184个HCC样本和672个非肿瘤对照),我们确定了HCC与对照样本之间的5个关键差异表达基因(即CCDC107、CXCL12、GIGYF1、GMNN和IFFO1)。基于这5个DEG构建的分类器在识别HCC方面达到了近乎完美的性能。我们收集的一个美国白种人队列(包含17例伴有配对非肿瘤组织的HCC)进一步验证了这5个DEG的性能。我们工作的概念性进展在于在分析框架中对基因-基因相互作用进行建模并校正批次效应。基于这5个DEG构建的分类器展示了HCC清晰的特征模式。结果在具有各种疾病病因的不同队列/人群中是可解释的、稳健的且可重复的,表明这5个DEG是可以在基因组水平描述HCC整体特征的内在变量。本研究中应用的分析框架可能为改进人类癌症的转录组谱分析开辟一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5cf/10413891/fa033eef2037/10.1177_11769351231190477-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验