Suppr超能文献

综合分析竞争内源性 RNA 网络揭示了预测肝细胞癌复发的潜在生物标志物。

Comprehensive analyses of competing endogenous RNA networks reveal potential biomarkers for predicting hepatocellular carcinoma recurrence.

机构信息

Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.

出版信息

BMC Cancer. 2021 Apr 20;21(1):436. doi: 10.1186/s12885-021-08173-0.

Abstract

BACKGROUND

Hepatocellular carcinoma (HCC) is one of the most common and deadly malignant tumors, with a high rate of recurrence worldwide. This study aimed to investigate the mechanism underlying the progression of HCC and to identify recurrence-related biomarkers.

METHODS

We first analyzed 132 HCC patients with paired tumor and adjacent normal tissue samples from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs). The expression profiles and clinical information of 372 HCC patients from The Cancer Genome Atlas (TCGA) database were next analyzed to further validate the DEGs, construct competing endogenous RNA (ceRNA) networks and discover the prognostic genes associated with recurrence. Finally, several recurrence-related genes were evaluated in two external cohorts, consisting of fifty-two and forty-nine HCC patients, respectively.

RESULTS

With the comprehensive strategies of data mining, two potential interactive ceRNA networks were constructed based on the competitive relationships of the ceRNA hypothesis. The 'upregulated' ceRNA network consists of 6 upregulated lncRNAs, 3 downregulated miRNAs and 5 upregulated mRNAs, and the 'downregulated' network includes 4 downregulated lncRNAs, 12 upregulated miRNAs and 67 downregulated mRNAs. Survival analysis of the genes in the ceRNA networks demonstrated that 20 mRNAs were significantly associated with recurrence-free survival (RFS). Based on the prognostic mRNAs, a four-gene signature (ADH4, DNASE1L3, HGFAC and MELK) was established with the least absolute shrinkage and selection operator (LASSO) algorithm to predict the RFS of HCC patients, the performance of which was evaluated by receiver operating characteristic curves. The signature was also validated in two external cohort and displayed effective discrimination and prediction for the RFS of HCC patients.

CONCLUSIONS

In conclusion, the present study elucidated the underlying mechanisms of tumorigenesis and progression, provided two visualized ceRNA networks and successfully identified several potential biomarkers for HCC recurrence prediction and targeted therapies.

摘要

背景

肝细胞癌(HCC)是最常见和最致命的恶性肿瘤之一,全球复发率很高。本研究旨在探讨 HCC 进展的机制,并确定与复发相关的生物标志物。

方法

我们首先从基因表达综合数据库(GEO)分析了 132 例 HCC 患者配对肿瘤和相邻正常组织样本,以鉴定差异表达基因(DEGs)。然后分析来自癌症基因组图谱(TCGA)数据库的 372 例 HCC 患者的表达谱和临床信息,进一步验证 DEGs,构建竞争性内源性 RNA(ceRNA)网络,并发现与复发相关的预后基因。最后,在两个外部队列中评估了几个与复发相关的基因,分别包含 52 例和 49 例 HCC 患者。

结果

通过综合数据挖掘策略,基于 ceRNA 假说的竞争关系构建了两个潜在的交互 ceRNA 网络。“上调”ceRNA 网络包含 6 个上调的 lncRNA、3 个下调的 miRNA 和 5 个上调的 mRNA,“下调”网络包括 4 个下调的 lncRNA、12 个上调的 miRNA 和 67 个下调的 mRNA。ceRNA 网络中基因的生存分析表明,20 个 mRNAs 与无复发生存(RFS)显著相关。基于预后 mRNAs,使用最小绝对收缩和选择算子(LASSO)算法建立了一个包含 4 个基因(ADH4、DNASE1L3、HGFAC 和 MELK)的特征,用于预测 HCC 患者的 RFS,通过接收者操作特征曲线评估了其性能。该特征还在两个外部队列中进行了验证,并显示出对 HCC 患者 RFS 的有效区分和预测。

结论

总之,本研究阐明了肿瘤发生和进展的潜在机制,提供了两个可视化的 ceRNA 网络,并成功鉴定了一些潜在的 HCC 复发预测和靶向治疗的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e8/8058997/b4501f2ff94d/12885_2021_8173_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验