Suppr超能文献

需氧甲烷氧化作用增加了产甲烷湖泊沉积物中的净铁还原量。

Aerobic methanotrophy increases the net iron reduction in methanogenic lake sediments.

作者信息

Vigderovich Hanni, Eckert Werner, Elvert Marcus, Gafni Almog, Rubin-Blum Maxim, Bergman Oded, Sivan Orit

机构信息

Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.

The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel.

出版信息

Front Microbiol. 2023 Jul 27;14:1206414. doi: 10.3389/fmicb.2023.1206414. eCollection 2023.

Abstract

In methane (CH) generating sediments, methane oxidation coupled with iron reduction was suggested to be catalyzed by archaea and bacterial methanotrophs of the order Methylococcales. However, the co-existence of these aerobic and anaerobic microbes, the link between the processes, and the oxygen requirement for the bacterial methanotrophs have remained unclear. Here, we show how stimulation of aerobic methane oxidation at an energetically low experimental environment influences net iron reduction, accompanied by distinct microbial community changes and lipid biomarker patterns. We performed incubation experiments (between 30 and 120 days long) with methane generating lake sediments amended with C-labeled methane, following the additions of hematite and different oxygen levels in nitrogen headspace, and monitored methane turnover by C-DIC measurements. Increasing oxygen exposure (up to 1%) promoted aerobic methanotrophy, considerable net iron reduction, and the increase of microbes, such as , , and , with the latter two being likely candidates for iron recycling. Amendments of C-labeled methanol as a potential substrate for the methanotrophs under hypoxia instead of methane indicate that this substrate primarily fuels methylotrophic methanogenesis, identified by high methane concentrations, strongly positive δC values, and archaeal lipid stable isotope data. In contrast, the inhibition of methanogenesis by 2-bromoethanesulfonate (BES) led to increased methanol turnover, as suggested by similar C enrichment in DIC and high amounts of newly produced bacterial fatty acids, probably derived from heterotrophic bacteria. Our experiments show a complex link between aerobic methanotrophy and iron reduction, which indicates iron recycling as a survival mechanism for microbes under hypoxia.

摘要

在产生甲烷(CH)的沉积物中,甲烷氧化与铁还原的耦合作用被认为是由古菌和甲基球菌目细菌型甲烷营养菌催化的。然而,这些需氧和厌氧微生物的共存、过程之间的联系以及细菌型甲烷营养菌对氧气的需求仍不明确。在此,我们展示了在能量较低的实验环境中刺激需氧甲烷氧化如何影响净铁还原,同时伴随着明显的微生物群落变化和脂质生物标志物模式。我们对添加了C标记甲烷的产甲烷湖泊沉积物进行了培养实验(持续30至120天),在氮气顶空加入赤铁矿并设置不同氧气水平,通过C-DIC测量监测甲烷周转情况。增加氧气暴露量(高达1%)促进了需氧甲烷营养作用、显著的净铁还原以及微生物的增加,比如、和,后两者可能是铁循环的候选者。在缺氧条件下用C标记的甲醇作为甲烷营养菌的潜在底物进行添加,而不是甲烷,结果表明该底物主要促进甲基营养型甲烷生成,这通过高甲烷浓度、强烈正的δC值和古菌脂质稳定同位素数据得以确认。相反,2-溴乙烷磺酸盐(BES)对甲烷生成的抑制导致甲醇周转增加,这从DIC中类似的C富集以及大量新产生的细菌脂肪酸(可能来自异养细菌)可以看出。我们的实验表明需氧甲烷营养作用和铁还原之间存在复杂联系,这表明铁循环是微生物在缺氧条件下的一种生存机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a8/10415106/0819cfe726b9/fmicb-14-1206414-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验