Atreya Mihir R, Bennett Tellen D, Geva Alon, Faustino E Vincent S, Rogerson Colin M, Lutfi Riad, Cvijanovich Natalie Z, Bigham Michael T, Nowak Jeffrey, Schwarz Adam J, Baines Torrey, Haileselassie Bereketeab, Thomas Neal J, Luo Yuan, Sanchez-Pinto L Nelson
Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, 45229, OH, USA.
Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
Res Sq. 2023 Aug 2:rs.3.rs-3216613. doi: 10.21203/rs.3.rs-3216613/v1.
Identification of children with sepsis-associated multiple organ dysfunction syndrome (MODS) at risk for poor outcomes remains a challenge. Data-driven phenotyping approaches that leverage electronic health record (EHR) data hold promise given the widespread availability of EHRs. We sought to externally validate the data-driven 'persistent hypoxemia, encephalopathy, and shock' (PHES) phenotype and determine its association with inflammatory and endothelial biomarkers, as well as biomarker-based pediatric risk-strata.
We trained and validated a random forest classifier using organ dysfunction subscores in the EHR dataset used to derive the PHES phenotype. We used the classifier to assign phenotype membership in a test set consisting of prospectively enrolled pediatric septic shock patients. We compared biomarker profiles of those with and without the PHES phenotype and determined the association with established biomarker-based mortality and MODS risk-strata.
25 pediatric intensive care units (PICU) across the U.S.
EHR data from 15,246 critically ill patients sepsis-associated MODS and 1,270 pediatric septic shock patients in the test cohort of whom 615 had biomarker data.
None.
The area under the receiver operator characteristic curve (AUROC) of the new classifier to predict PHES phenotype membership was 0.91(95%CI, 0.90-0.92) in the EHR validation set. In the test set, patients with the PHES phenotype were independently associated with both increased odds of complicated course (adjusted odds ratio [aOR] of 4.1, 95%CI: 3.2-5.4) and 28-day mortality (aOR of 4.8, 95%CI: 3.11-7.25) after controlling for age, severity of illness, and immuno-compromised status. Patients belonging to the PHES phenotype were characterized by greater degree of systemic inflammation and endothelial activation, and overlapped with high risk-strata based on PERSEVERE biomarkers predictive of death and persistent MODS.
The PHES trajectory-based phenotype is reproducible, independently associated with poor clinical outcomes, and overlap with higher risk-strata based on validated biomarker approaches.
识别脓毒症相关多器官功能障碍综合征(MODS)患儿中预后不良的风险仍然是一项挑战。鉴于电子健康记录(EHR)的广泛可用性,利用EHR数据的数据驱动表型分析方法具有前景。我们试图对外验证数据驱动的“持续性低氧血症、脑病和休克”(PHES)表型,并确定其与炎症和内皮生物标志物以及基于生物标志物的儿科风险分层的关联。
我们使用用于推导PHES表型的EHR数据集中的器官功能障碍子评分训练并验证了一个随机森林分类器。我们使用该分类器在一个由前瞻性纳入的儿科脓毒症休克患者组成的测试集中分配表型成员资格。我们比较了有和没有PHES表型的患者的生物标志物谱,并确定了与既定的基于生物标志物的死亡率和MODS风险分层的关联。
美国25个儿科重症监护病房(PICU)
来自15246例脓毒症相关MODS重症患者的EHR数据以及测试队列中的1270例儿科脓毒症休克患者,其中615例有生物标志物数据。
无。
在EHR验证集中,新分类器预测PHES表型成员资格的受试者工作特征曲线下面积(AUROC)为0.91(95%CI,0.90 - 0.92)。在测试集中,在控制了年龄、疾病严重程度和免疫受损状态后,具有PHES表型的患者与复杂病程的增加几率(调整优势比[aOR]为4.1,95%CI:3.2 - 5.4)和28天死亡率(aOR为4.8,95%CI:3.11 - 7.25)均独立相关。属于PHES表型的患者具有更高程度的全身炎症和内皮激活特征,并且与基于预测死亡和持续性MODS的PERSEVERE生物标志物的高风险分层重叠。
基于PHES轨迹的表型具有可重复性,与不良临床结果独立相关,并且与基于经过验证的生物标志物方法的更高风险分层重叠。