Suppr超能文献

采用一种揭示全因性心力衰竭隐藏复杂性的新方法改进基因关联研究。

Improving Genetic Association Studies with a Novel Methodology that Unveils the Hidden Complexity of All-Cause Heart Failure.

作者信息

Gregg John T, Himes Blanca E, Asselbergs Folkert W, Moore Jason H

机构信息

Department of Biostatistics Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA.

Institute of Cardiovascular Science, University College London, London, England.

出版信息

medRxiv. 2023 Aug 4:2023.08.02.23293567. doi: 10.1101/2023.08.02.23293567.

Abstract

MOTIVATION

Genome-Wide Association Studies (GWAS) commonly assume phenotypic and genetic homogeneity that is not present in complex conditions. We designed Transformative Regression Analysis of Combined Effects (TRACE), a GWAS methodology that better accounts for clinical phenotype heterogeneity and identifies gene-by-environment (GxE) interactions. We demonstrated with UK Biobank (UKB) data that TRACE increased the variance explained in All-Cause Heart Failure (AHF) via the discovery of novel single nucleotide polymorphism (SNP) and SNP-by-environment (i.e. GxE) interaction associations. First, we transformed 312 AHF-related ICD10 codes (including AHF) into continuous low-dimensional features (i.e., latent phenotypes) for a more nuanced disease representation. Then, we ran a standard GWAS on our latent phenotypes to discover main effects and identified GxE interactions with target encoding. Genes near associated SNPs subsequently underwent enrichment analysis to explore potential functional mechanisms underlying associations. Latent phenotypes were regressed against their SNP hits and the estimated latent phenotype values were used to measure the amount of AHF variance explained.

RESULTS

Our method identified over 100 main GWAS effects that were consistent with prior studies and hundreds of novel gene-by-smoking interactions, which collectively accounted for approximately 10% of AHF variance. This represents an improvement over traditional GWAS whose results account for a negligible proportion of AHF variance. Enrichment analyses suggested that hundreds of miRNAs mediated the SNP effect on various AHF-related biological pathways. The TRACE framework can be applied to decode the genetics of other complex diseases.

AVAILABILITY

All code is available at https://github.com/EpistasisLab/latent_phenotype_project.

摘要

动机

全基因组关联研究(GWAS)通常假定不存在于复杂疾病中的表型和基因同质性。我们设计了联合效应的变革性回归分析(TRACE),这是一种GWAS方法,能更好地解释临床表型异质性并识别基因-环境(GxE)相互作用。我们利用英国生物银行(UKB)数据证明,TRACE通过发现新的单核苷酸多态性(SNP)和SNP-环境(即GxE)相互作用关联,增加了全因心力衰竭(AHF)中可解释的方差。首先,我们将312个与AHF相关的ICD10编码(包括AHF)转化为连续的低维特征(即潜在表型),以实现更细致入微的疾病表征。然后,我们对潜在表型进行标准GWAS以发现主效应,并通过目标编码识别GxE相互作用。随后对相关SNP附近的基因进行富集分析,以探索关联背后的潜在功能机制。将潜在表型与其SNP命中结果进行回归分析,并使用估计的潜在表型值来衡量AHF方差的解释量。

结果

我们的方法识别出100多个与先前研究一致的主要GWAS效应以及数百个新的基因-吸烟相互作用,这些共同解释了约10%的AHF方差。这相对于传统GWAS有了改进,传统GWAS的结果对AHF方差的解释比例可忽略不计。富集分析表明,数百种微小RNA介导了SNP对各种与AHF相关的生物学途径的影响。TRACE框架可应用于解析其他复杂疾病的遗传学。

可用性

所有代码可在https://github.com/EpistasisLab/latent_phenotype_project获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/803e/10418568/5457ff686d05/nihpp-2023.08.02.23293567v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验