Paros Bio, Boston, Massachusetts, USA.
Mass General Brigham Ventures (Partners Innovation Fund), Boston, Massachusetts, USA.
Hum Gene Ther. 2023 Oct;34(19-20):1049-1063. doi: 10.1089/hum.2023.092.
Autosomal dominant Alzheimer's disease (ADAD) is a rare early-onset form of Alzheimer's disease, caused by dominant mutations in one of three genes: presenilin 1, presenilin 2, and amyloid β precursor protein (APP). Mutations in the presenilin 1 gene () account for the majority of cases, and individuals who inherit a single-mutant allele go on to develop early-onset dementia, ultimately leading to death. The presenilin 1 protein (PS1) is the catalytic subunit of the γ-secretase protease, a tetrameric protease responsible for cleavage of numerous transmembrane proteins, including Notch and the APP. Inclusion of a mutant PS1 subunit in the γ-secretase complex leads to a loss of enzyme function and a preferential reduction of shorter forms of Aβ peptides over longer forms, an established biomarker of ADAD progression in human patients. In this study, we describe the development of a gene therapy vector expressing a wild-type (WT) copy of human to ameliorate the loss of function associated with mutations. We have carried out studies in mouse models using a recombinant AAV9 vector to deliver the gene directly into the central nervous system (CNS) and shown that we can normalize γ-secretase function and slow neurodegeneration in both conditional knockout and mutant knockin models. We have also carried out biodistribution studies in nonhuman primates (NHPs) and demonstrated the ability to achieve broad PS1 protein expression throughout the cortex and the hippocampus, two regions known to be critically involved in ADAD progression. These studies demonstrate preclinical proof of concept that expression of a WT human gene in cells harboring a dominant mutation can correct the γ-secretase dysfunction. In addition, direct administration of the recombinant AAV9 into the NHP brain can achieve broad expression at levels predicted to provide efficacy in the clinic.
常染色体显性阿尔茨海默病(ADAD)是一种罕见的早发性阿尔茨海默病形式,由三个基因中的一个显性突变引起:早老素 1、早老素 2 和淀粉样前体蛋白(APP)。早老素 1 基因突变()占大多数病例,遗传单个突变等位基因的个体最终会发展为早发性痴呆症,最终导致死亡。早老素 1 蛋白(PS1)是γ-分泌酶蛋白酶的催化亚基,γ-分泌酶是一种四聚体蛋白酶,负责切割许多跨膜蛋白,包括 Notch 和 APP。突变的 PS1 亚基包含在 γ-分泌酶复合物中会导致酶功能丧失,并且优先减少 Aβ 肽的较短形式而不是较长形式,这是人类 ADAD 进展的既定生物标志物。在这项研究中,我们描述了一种表达野生型(WT)人类 拷贝的基因治疗载体的开发,以改善与 突变相关的功能丧失。我们使用重组 AAV9 载体在小鼠模型中进行了研究,将 基因直接递送到中枢神经系统(CNS),并表明我们可以使 γ-分泌酶功能正常化并减缓两种 条件性敲除和 突变敲入模型中的神经退行性变。我们还在非人类灵长类动物(NHPs)中进行了生物分布研究,并证明了能够在整个大脑皮层和海马体中实现广泛的 PS1 蛋白表达的能力,这两个区域已知与 ADAD 的进展密切相关。这些研究证明了携带显性 突变的细胞中表达 WT 人类 基因可以纠正 γ-分泌酶功能障碍的临床前概念验证。此外,重组 AAV9 直接给药到 NHP 大脑可以实现广泛表达,预测水平可以在临床上提供疗效。