Department of Pharmacology, University of Minnesota Medical School , Minneapolis, Minnesota, USA.
Center for Coronavirus Research, University of Minnesota , Minneapolis, Minnesota, USA.
J Virol. 2023 Aug 31;97(8):e0082223. doi: 10.1128/jvi.00822-23. Epub 2023 Aug 14.
Understanding the evolutionary strategies of the SARS-CoV-2 omicron variant is crucial for comprehending the COVID-19 pandemic and preventing future coronavirus pandemics. In this study, we determined the crystal structures of the receptor-binding domains (RBDs) from currently circulating omicron subvariants XBB.1 and XBB.1.5 (also the emerging XBB.1.9.1), each complexed with human ACE2. We studied how individual RBD residues evolved structurally in omicron subvariants, specifically how they adapted to human ACE2. Our findings revealed that residues 493 and 496, which exhibited good human ACE2 adaptation in pre-omicron variants, evolved to poor adaptation in early omicron subvariants (but with good adaption to mouse ACE2) and then reverted to good adaptation in recent omicron subvariants. This result is consistent with the hypothesis that non-human animals facilitated the evolution of early omicron subvariants. Additionally, residue 486, which exhibited good human ACE2 adaptation in early omicron subvariants, evolved to poor adaptation in later omicron subvariants and then returned to good adaptation in recent omicron subvariants. This result is consistent with the hypothesis that immune evasion facilitated the evolution of later omicron subvariants. Thus, our study suggests that both non-human animals and immune evasion may have contributed to driving omicron evolution at different stages of the pandemic. IMPORTANCE The sudden emergence and continued evolution of the SARS-CoV-2 omicron variant have left many mysteries unanswered, such as the origin of early omicron subvariants and the factors driving omicron evolution. To address these questions, we studied the crystal structures of human ACE2-bound receptor-binding domains (RBDs) from omicron subvariants XBB.1 and XBB.1.5 (XBB.1.9.1). Our in-depth structural analysis sheds light on how specific RBD mutations adapt to either human or mouse ACE2 and suggests non-human animals and immune evasion may have influenced omicron evolution during different stages of the pandemic. These findings provide valuable insights into the mechanisms underlying omicron evolution, deepen our understanding of the COVID-19 pandemic, and have significant implications for preventing future coronavirus pandemics.
了解 SARS-CoV-2 奥密克戎变体的进化策略对于理解 COVID-19 大流行和预防未来的冠状病毒大流行至关重要。在这项研究中,我们测定了目前流行的奥密克戎亚变体 XBB.1 和 XBB.1.5(以及新兴的 XBB.1.9.1)的受体结合域(RBD)与人类 ACE2 复合物的晶体结构。我们研究了奥密克戎亚变体中 RBD 残基如何在结构上进化,特别是它们如何适应人类 ACE2。我们的发现表明,在奥密克戎变体之前表现出良好人类 ACE2 适应性的 493 和 496 位残基,在早期奥密克戎亚变体中进化为适应性差(但对鼠 ACE2 适应性好),然后在最近的奥密克戎亚变体中恢复为良好适应性。这一结果与非人类动物促进早期奥密克戎亚变体进化的假说一致。此外,在早期奥密克戎亚变体中表现出良好人类 ACE2 适应性的 486 位残基,在后期奥密克戎亚变体中进化为适应性差,然后在最近的奥密克戎亚变体中恢复为良好适应性。这一结果与免疫逃避促进后期奥密克戎亚变体进化的假说一致。因此,我们的研究表明,非人类动物和免疫逃避可能在大流行的不同阶段都有助于推动奥密克戎的进化。重要性 SARS-CoV-2 奥密克戎变体的突然出现和持续进化留下了许多未解之谜,例如早期奥密克戎亚变体的起源以及驱动奥密克戎进化的因素。为了解决这些问题,我们研究了奥密克戎亚变体 XBB.1 和 XBB.1.5(XBB.1.9.1)与人 ACE2 结合的受体结合域(RBD)的晶体结构。我们深入的结构分析揭示了特定的 RBD 突变如何适应人类或鼠 ACE2,并表明非人类动物和免疫逃避可能在大流行的不同阶段影响了奥密克戎的进化。这些发现为奥密克戎进化的机制提供了有价值的见解,加深了我们对 COVID-19 大流行的理解,并对预防未来的冠状病毒大流行具有重要意义。