Suppr超能文献

通过乳化法制备并放大德拉马尼纳米颗粒用于口服结核病治疗。

Formulation and Scale-up of Delamanid Nanoparticles via Emulsification for Oral Tuberculosis Treatment.

机构信息

Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States.

Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2032, Australia.

出版信息

Mol Pharm. 2023 Sep 4;20(9):4546-4558. doi: 10.1021/acs.molpharmaceut.3c00240. Epub 2023 Aug 14.

Abstract

Delamanid (DLM) is a hydrophobic small molecule therapeutic used to treat drug-resistant tuberculosis (DR-TB). Due to its hydrophobicity and resulting poor aqueous solubility, formulation strategies such as amorphous solid dispersions (ASDs) have been investigated to enhance its aqueous dissolution kinetics and thereby improve oral bioavailability. However, ASD formulations are susceptible to temperature- and humidity-induced phase separation and recrystallization under harsh storage conditions typically encountered in areas with high tuberculosis incidence. Nanoencapsulation represents an alternative formulation strategy to increase aqueous dissolution kinetics while remaining stable at elevated temperature and humidity. The stabilizer layer coating the nanoparticle drug core limits the formation of large drug domains by diffusion during storage, representing an advantage over ASDs. Initial attempts to form DLM-loaded nanoparticles via precipitation-driven self-assembly were unsuccessful, as the trifluoromethyl and nitro functional groups present on DLM were thought to interfere with surface stabilizer attachment. Therefore, in this work, we investigated the nanoencapsulation of DLM via emulsification, avoiding the formation of a solid drug core and instead keeping DLM dissolved in a dichloromethane dispersed phase during nanoparticle formation. Initial emulsion formulation screening by probe-tip ultrasonication revealed that a 1:1 mass ratio of lecithin and HPMC stabilizers formed 250 nm size-stable emulsion droplets with 40% DLM loading. Scale-up studies were performed to produce nearly identical droplet size distribution at larger scale using high-pressure homogenization, a continuous and industrially scalable technique. The resulting emulsions were spray-dried to form a dried powder, and dissolution studies showed dramatically enhanced dissolution kinetics compared to both as-received crystalline DLM and micronized crystalline DLM, owing to the increased specific surface area and partially amorphous character of the DLM-loaded nanoparticles. Solid-state NMR and dissolution studies showed good physical stability of the emulsion powders during accelerated stability testing (50 °C/75% RH, open vial).

摘要

德拉马尼(DLM)是一种用于治疗耐药结核病(DR-TB)的疏水性小分子治疗药物。由于其疏水性和由此导致的差水溶性,已经研究了制剂策略,例如无定形固体分散体(ASD),以提高其水溶解动力学,从而提高口服生物利用度。然而,ASD 制剂在高结核病发病率地区常见的恶劣储存条件下,容易受到温度和湿度诱导的相分离和再结晶的影响。纳米封装代表了一种替代制剂策略,可以在提高水溶解动力学的同时在高温和高湿度下保持稳定。纳米颗粒药物核心的稳定剂层通过在储存过程中的扩散限制大药物域的形成,这是相对于 ASD 的优势。最初通过沉淀驱动自组装形成负载 DLM 的纳米颗粒的尝试不成功,因为 DLM 上存在的三氟甲基和硝基官能团被认为会干扰表面稳定剂的附着。因此,在这项工作中,我们通过乳化研究了 DLM 的纳米封装,避免了固体药物核心的形成,而是在纳米颗粒形成过程中将 DLM 保持在二氯甲烷分散相中溶解。通过探针尖端超声的初始乳液配方筛选表明,1:1 质量比的卵磷脂和 HPMC 稳定剂形成 250nm 尺寸稳定的乳液液滴,载药量为 40%。采用高压匀质进行放大研究,以在更大规模上生产几乎相同的粒径分布,高压匀质是一种连续且工业上可扩展的技术。所得乳液被喷雾干燥以形成干粉,与原结晶 DLM 和微粉化结晶 DLM 相比,溶解研究表明溶解动力学大大增强,这是由于负载 DLM 的纳米颗粒的比表面积增加和部分非晶态特性。固态 NMR 和溶解研究表明,在加速稳定性测试(50°C/75%RH,开瓶)期间,乳液粉末具有良好的物理稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae19/10481377/80bfed3a6c84/mp3c00240_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验