Li Taofeng, Yan Suxia, Dong Hongyu, Zheng Yang, Ming Kun, Tong Zhuang, Li Guochun, Li Huaming, Li Weimin, Wang Quan, Liu Junfeng, Wang Yong
Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
J Colloid Interface Sci. 2023 Dec;651:959-967. doi: 10.1016/j.jcis.2023.08.047. Epub 2023 Aug 9.
Developing long-cycle stable Zn-ion batteries encounters significant challenges associated with Zn anodes. To address these issues, we propose an interface engineering strategy using an artificial protective layer called zinc hyaluronate (ZH) on the Zn anode surface. The ZH film acts as a barrier, preventing direct contact between Zn anode and electrolyte, reducing hydrogen evolution and corrosion. Its carboxyl and hydroxyl groups create uniform and plentiful nucleophilic sites for Zn ions, promoting uniform Zn deposition and suppressing dendrite growth. Remarkably, a Zn//Zn symmetric cell assembled with ZH-decorated Zn foil (Zn@ZH) exhibits outstanding cycle life, lasting 3600 h at a current density of 5 mA cm and a capacity density of 5 mAh cm, much better than cells with pristine Zn anode. Even under extremely tough conditions of 10 mA cm and 10 mAh cm, the battery life exceeds 1300 h. Furthermore, the Zn@ZH//VO full cell demonstrates superior capacity retention compared to the Zn//VO cell after 1000 cycles at a current density of 10 A g. These results highlight the benefits of the artificial protective layer strategy for advanced Zn anodes, providing insights into the underlying mechanism and promoting the development of high-performance aqueous zinc ion batteries.
开发长循环稳定的锌离子电池面临着与锌负极相关的重大挑战。为了解决这些问题,我们提出了一种界面工程策略,即在锌负极表面使用一种名为透明质酸锌(ZH)的人工保护层。ZH膜起到了屏障作用,防止锌负极与电解质直接接触,减少析氢和腐蚀。其羧基和羟基为锌离子创造了均匀且丰富的亲核位点,促进锌的均匀沉积并抑制枝晶生长。值得注意的是,用ZH修饰的锌箔(Zn@ZH)组装的Zn//Zn对称电池表现出出色的循环寿命,在电流密度为5 mA cm²和容量密度为5 mAh cm²的条件下可持续3600小时,远优于使用原始锌负极的电池。即使在10 mA cm²和10 mAh cm²的极端苛刻条件下,电池寿命也超过1300小时。此外,在电流密度为10 A g⁻¹的条件下循环1000次后,Zn@ZH//VO全电池相比Zn//VO电池表现出卓越的容量保持率。这些结果突出了人工保护层策略对先进锌负极的益处,为其潜在机制提供了见解,并推动了高性能水系锌离子电池的发展。