Suppr超能文献

用于促进5-羟甲基糠醛电催化加氢的Rh分散型铜纳米线催化剂

Rh-dispersed Cu nanowire catalyst for boosting electrocatalytic hydrogenation of 5-hydroxymethylfurfural.

作者信息

Zhang Wenfei, Qi Yanbin, Zhao Yuan, Ge Wangxin, Dong Lei, Shen Jianhua, Jiang Hongliang, Li Chunzhong

机构信息

Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

出版信息

Sci Bull (Beijing). 2023 Oct 15;68(19):2190-2199. doi: 10.1016/j.scib.2023.07.036. Epub 2023 Jul 25.

Abstract

Electrocatalytic conversion of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) presents a compelling strategy for the production of premium chemicals via the utilization of renewable energy sources. Exploring efficient catalytic systems to obtain highly selective BHMF has remained a giant challenge. A design strategy is proposed here to regulate active hydrogen (H) production in rhodium (Rh) nanoparticles grown on Cu nanowires (RhCu NWs) catalyst, which achieves a faradaic efficiency (FE) of 92.6% in the electrocatalytic reduction of HMF to BHMF at -20 mA cm with no degradation in performance after 8 cycles. Kinetic investigations and electron spin resonance (ESR) spectroscopy reveal that the incorporation of Rh accelerates the water dissociation and facilitates the generation of H. In situ attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) further demonstrates that the Rh component boosts the proportion of ordered weakly hydrogen-bonded water molecules on the catalyst surface, which is much easier to dissociate. The construction of an interfacial H-rich environment promotes the HMF intermediates binding with H to BMHF, thereby suppressing the formation of undesired dimers. This work demonstrates the promise of altering the interfacial water environment as a strategy to boost the electrosynthetic properties of biomass-derived products toward value-added outcomes.

摘要

通过利用可再生能源将生物质衍生的5-羟甲基糠醛(HMF)电催化转化为2,5-双(羟甲基)呋喃(BHMF),为生产优质化学品提供了一种引人注目的策略。探索高效的催化体系以获得高选择性的BHMF仍然是一个巨大的挑战。本文提出了一种设计策略,用于调节生长在铜纳米线(RhCu NWs)催化剂上的铑(Rh)纳米颗粒中的活性氢(H)生成,该策略在-20 mA cm下将HMF电催化还原为BHMF时实现了92.6%的法拉第效率(FE),并且在8次循环后性能没有下降。动力学研究和电子自旋共振(ESR)光谱表明,Rh的掺入加速了水的解离并促进了H的生成。原位衰减全反射表面增强红外吸收光谱(ATR-SEIRAS)进一步表明,Rh组分提高了催化剂表面有序弱氢键水分子的比例,这些水分子更容易解离。构建富含界面H的环境促进了HMF中间体与H结合生成BMHF,从而抑制了不需要的二聚体的形成。这项工作证明了改变界面水环境作为一种策略来提高生物质衍生产品向增值产物的电合成性能的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验