Cao Xing, Ding Yunxuan, Chen Dexin, Ye Wentao, Yang Wenxing, Sun Licheng
Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024 Zhejiang Province, China.
Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, 310030 Zhejiang Province, China.
J Am Chem Soc. 2024 Sep 11;146(36):25125-25136. doi: 10.1021/jacs.4c08205. Epub 2024 Aug 7.
Electrochemical hydrogenation of aldehyde molecules, exemplified by 5-hydroxymethylfurfural (HMF), offers a sustainable approach for synthesizing higher value-added alcohols. However, severe coupling side reactions impede its practical implementation at high concentrations. In this work, a cluster-level heterostructure of a PMo/Cu catalyst is synthesized by loading Keggin-type phosphomolybdic acid (HPMoO, PMo) onto Cu nanowires. The catalyst exhibits high selectivity in electrocatalytic hydrogenation (ECH) of HMF to 2,5-bishydroxymethylfuran (BHMF) under an unprecedentedly high substrate concentration of 1.0 M. Under -0.3 V (vs RHE) with 1.0 M HMF, PMo/Cu shows a Faradaic efficiency as high as 98% with an excellent productivity of 4.35 mmol cm h toward BHMF, much higher than those on the pristine Cu nanowires. Mechanism studies and density functional theory calculations demonstrate that the heterostructural interface of PMo/Cu serves as an active reaction center for the ECH. The unique electronic properties and geometric structure promote the dissociative reduction of water molecules to generate H* and reduce HMF with a decreased reaction energy barrier, which is responsible for exceptional reactivity and selectivity.
以5-羟甲基糠醛(HMF)为例的醛分子电化学氢化反应,为合成高附加值醇类提供了一种可持续的方法。然而,严重的偶联副反应阻碍了其在高浓度下的实际应用。在这项工作中,通过将Keggin型磷钼酸(HPMoO,PMo)负载到铜纳米线上,合成了一种PMo/Cu催化剂的簇级异质结构。该催化剂在1.0 M的前所未有的高底物浓度下,对HMF电催化氢化(ECH)生成2,5-双羟甲基呋喃(BHMF)表现出高选择性。在-0.3 V(相对于可逆氢电极)和1.0 M HMF条件下,PMo/Cu对BHMF的法拉第效率高达98%,产率高达4.35 mmol cm h,远高于原始铜纳米线上的产率。机理研究和密度泛函理论计算表明,PMo/Cu的异质结构界面是ECH的活性反应中心。独特的电子性质和几何结构促进了水分子的解离还原以生成H*,并以降低的反应能垒还原HMF,这是其卓越反应活性和选择性的原因。