IEEE J Biomed Health Inform. 2023 Oct;27(10):4866-4877. doi: 10.1109/JBHI.2023.3305377. Epub 2023 Oct 5.
Precise delineation of hippocampus subfields is crucial for the identification and management of various neurological and psychiatric disorders. However, segmenting these subfields automatically in routine 3T MRI is challenging due to their complex morphology and small size, as well as the limited signal contrast and resolution of the 3T images. This research proposes Syn_SegNet, an end-to-end, multitask joint deep neural network that leverages ultrahigh-field 7T MRI synthesis to improve hippocampal subfield segmentation in 3T MRI. Our approach involves two key components. First, we employ a modified Pix2PixGAN as the synthesis model, incorporating self-attention modules, image and feature matching loss, and ROI loss to generate high-quality 7T-like MRI around the hippocampal region. Second, we utilize a variant of 3D-U-Net with multiscale deep supervision as the segmentation subnetwork, incorporating an anatomic weighted cross-entropy loss that capitalizes on prior anatomical knowledge. We evaluate our method on hippocampal subfield segmentation in paired 3T MRI and 7T MRI with seven different anatomical structures. The experimental findings demonstrate that Syn_SegNet's segmentation performance benefits from integrating synthetic 7T data in an online manner and is superior to competing methods. Furthermore, we assess the generalizability of the proposed approach using a publicly accessible 3T MRI dataset. The developed method would be an efficient tool for segmenting hippocampal subfields in routine clinical 3T MRI.
海马亚区的精确描绘对于各种神经和精神疾病的识别和管理至关重要。然而,由于其复杂的形态和较小的尺寸,以及 3T 图像的信号对比度和分辨率有限,自动分割这些亚区在常规 3T MRI 中具有挑战性。本研究提出了 Syn_SegNet,这是一个端到端的、多任务联合的深度神经网络,利用超高场 7T MRI 合成来提高 3T MRI 中海马亚区的分割。我们的方法包括两个关键组成部分。首先,我们采用修改后的 Pix2PixGAN 作为合成模型,引入自注意力模块、图像和特征匹配损失以及 ROI 损失,以生成围绕海马区的高质量 7T 样 MRI。其次,我们利用带有多尺度深度监督的 3D-U-Net 变体作为分割子网,引入利用先验解剖知识的解剖加权交叉熵损失。我们在配对的 3T MRI 和 7T MRI 上对七种不同解剖结构的海马亚区分割进行了评估。实验结果表明,Syn_SegNet 的分割性能受益于在线集成合成 7T 数据,优于竞争方法。此外,我们使用公开可用的 3T MRI 数据集评估了所提出方法的泛化能力。该方法将成为在常规临床 3T MRI 中分割海马亚区的有效工具。