Wu Zhengwang, Gao Yaozong, Shi Feng, Jewells Valerie, Shen Dinggang
Department of Radiology and BRIC, UNC at Chapel Hill, Chapel Hill, NC, USA.
Mach Learn Med Imaging. 2016 Oct;10019:229-236. doi: 10.1007/978-3-319-47157-0_28. Epub 2016 Oct 1.
Hippocampal subfields play important and divergent roles in both memory formation and early diagnosis of many neurological diseases, but automatic subfield segmentation is less explored due to its small size and poor image contrast. In this paper, we propose an automatic learning-based hippocampal subfields segmentation framework using multi-modality 3TMR images, including T1 MRI and resting-state fMRI (rs-fMRI). To do this, we first acquire both 3T and 7T T1 MRIs for each training subject, and then the 7T T1 MRI are linearly registered onto the 3T T1 MRI. Six hippocampal subfields are manually labeled on the aligned 7T T1 MRI, which has the 7T image contrast but sits in the 3T T1 space. Next, corresponding appearance and relationship features from both 3T T1 MRI and rs-fMRI are extracted to train a structured random forest as a multi-label classifier to conduct the segmentation. Finally, the subfield segmentation is further refined iteratively by additional context features and updated relationship features. To our knowledge, this is the first work that addresses the challenging automatic hippocampal subfields segmentation using 3T routine T1 MRI and rs-fMRI. The quantitative comparison between our results and manual ground truth demonstrates the effectiveness of our method. Besides, we also find that (a) multi-modality features significantly improved subfield segmentation performance due to the complementary information among modalities; (b) automatic segmentation results using 3T multimodality images are partially comparable to those on 7T T1 MRI.
海马亚区在记忆形成和多种神经疾病的早期诊断中发挥着重要且不同的作用,但由于其尺寸小和图像对比度差,自动亚区分割的研究较少。在本文中,我们提出了一种基于自动学习的海马亚区分割框架,使用多模态3T MR图像,包括T1 MRI和静息态功能磁共振成像(rs-fMRI)。为此,我们首先为每个训练对象获取3T和7T的T1 MRI,然后将7T T1 MRI线性配准到3T T1 MRI上。在对齐的7T T1 MRI上手动标记六个海马亚区,该图像具有7T图像对比度但位于3T T1空间中。接下来,从3T T1 MRI和rs-fMRI中提取相应的外观和关系特征,以训练结构化随机森林作为多标签分类器进行分割。最后,通过额外的上下文特征和更新的关系特征对亚区分割进行迭代进一步细化。据我们所知,这是第一项使用3T常规T1 MRI和rs-fMRI解决具有挑战性的自动海马亚区分割的工作。我们的结果与手动真值之间的定量比较证明了我们方法的有效性。此外,我们还发现:(a)由于模态之间的互补信息,多模态特征显著提高了亚区分割性能;(b)使用3T多模态图像的自动分割结果与7T T1 MRI上的结果部分可比。