Suppr超能文献

基于机器学习的环境传感器故障检测过程式质量控制。

Machine Learning-Assisted, Process-Based Quality Control for Detecting Compromised Environmental Sensors.

机构信息

Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125, United States.

出版信息

Environ Sci Technol. 2023 Nov 21;57(46):18058-18066. doi: 10.1021/acs.est.3c00360. Epub 2023 Aug 15.

Abstract

Machine learning (ML) techniques promise to revolutionize environmental research and management, but collecting the necessary volumes of high-quality data remains challenging. Environmental sensors are often deployed under harsh conditions, requiring labor-intensive quality assurance and control (QAQC) processes. The need for manual QAQC is a major impediment to the scalability of these sensor networks. Existing techniques for automated QAQC make strong assumptions about noise profiles in the data they filter that do not necessarily hold for broadly deployed environmental sensors, however. Toward the goal of increasing the volume of high-quality environmental data, we introduce an ML-assisted QAQC methodology that is robust to low signal-to-noise ratio data. Our approach embeds sensor measurements into a dynamical feature space and trains a binary classification algorithm (Support Vector Machine) to detect deviation from expected process dynamics, indicating whether a sensor has become compromised and requires maintenance. This strategy enables the automated detection of a wide variety of nonphysical signals. We apply the methodology to three novel data sets produced by 136 low-cost environmental sensors (stream level, drinking water pH, and drinking water electroconductivity), deployed by our group across 250,000 km in Michigan, USA. The proposed methodology achieved accuracy scores of up to 0.97 and consistently outperformed state-of-the-art anomaly detection techniques.

摘要

机器学习 (ML) 技术有望彻底改变环境研究和管理,但收集必要数量的高质量数据仍然具有挑战性。环境传感器通常在恶劣条件下部署,需要劳动密集型的质量保证和控制 (QAQC) 流程。手动 QAQC 是这些传感器网络可扩展性的主要障碍。然而,现有的自动化 QAQC 技术对其过滤数据中的噪声分布做出了很强的假设,但这些假设不一定适用于广泛部署的环境传感器。为了增加高质量环境数据的数量,我们引入了一种 ML 辅助的 QAQC 方法,该方法对低信噪比数据具有鲁棒性。我们的方法将传感器测量值嵌入动态特征空间,并训练二进制分类算法(支持向量机)来检测与预期过程动态的偏差,从而指示传感器是否出现故障并需要维护。这种策略能够自动检测各种非物理信号。我们将该方法应用于我们小组在美国密歇根州部署的 136 个低成本环境传感器(溪流水平、饮用水 pH 值和饮用水电导率)产生的三个新数据集。所提出的方法达到了高达 0.97 的准确率分数,并始终优于最先进的异常检测技术。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验