Suppr超能文献

使用弥散加权成像对处于前显型和显型亨廷顿病的深部灰质和白质进行混合纵向和横断面分析。

Mixed longitudinal and cross-sectional analyses of deep gray matter and white matter using diffusion weighted images in premanifest and manifest Huntington's disease.

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.

Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Neuroimage Clin. 2023;39:103493. doi: 10.1016/j.nicl.2023.103493. Epub 2023 Aug 9.

Abstract

Changes in the brain of patients with Huntington's disease (HD) begin years before clinical onset, so it remains critical to identify biomarkers to track these early changes. Metrics derived from tensor modeling of diffusion-weighted MRIs (DTI), that indicate the microscopic brain structure, can add important information to regional volumetric measurements. This study uses two large-scale longitudinal, multicenter datasets, PREDICT-HD and IMAGE-HD, to trace changes in DTI of HD participants with a broad range of CAP scores (a product of CAG repeat expansion and age), including those with pre-manifest disease (i.e., prior to clinical onset). Utilizing a fully automated data-driven approach to study the whole brain divided in regions of interest, we traced changes in DTI metrics (diffusivity and fractional anisotropy) versus CAP scores, using sigmoidal and linear regression models. We identified points of inflection in the sigmoidal regression using change-point analysis. The deep gray matter showed more evident and earlier changes in DTI metrics over CAP scores, compared to the deep white matter. In the deep white matter, these changes were more evident and occurred earlier in superior and posterior areas, compared to anterior and inferior areas. The curves of mean diffusivity vs. age of HD participants within a fixed CAP score were different from those of controls, indicating that the disease has an additional effect to age on the microscopic brain structure. These results show the regional and temporal vulnerability of the white matter and deep gray matter in HD, with potential implications for experimental therapeutics.

摘要

亨廷顿病(HD)患者的大脑变化在临床发病前多年就已经开始,因此,确定生物标志物来跟踪这些早期变化仍然至关重要。来自弥散张量成像(DTI)张量建模的指标,表明微观的大脑结构,可以为区域性体积测量提供重要信息。本研究使用两个大规模的纵向、多中心数据集,PREDICT-HD 和 IMAGE-HD,来追踪具有广泛 CAP 评分(CAG 重复扩展和年龄的产物)的 HD 参与者的 DTI 变化,包括那些处于前驱期疾病(即临床发病前)的患者。利用一种完全自动化的数据驱动方法来研究整个大脑分为感兴趣区域,我们追踪了 DTI 指标(扩散率和各向异性分数)与 CAP 评分之间的变化,使用了 sigmoidal 和线性回归模型。我们使用拐点分析在 sigmoidal 回归中确定了拐点。与深部白质相比,深部灰质在 DTI 指标上显示出更明显和更早的 CAP 评分变化。在深部白质中,与前、下区域相比,这些变化在顶、后区域更为明显且更早发生。在固定 CAP 评分内 HD 参与者的平均弥散率与年龄的曲线与对照组的不同,表明疾病对微观大脑结构的影响除了年龄因素还有其他因素。这些结果显示了 HD 中白质和深部灰质的区域和时间脆弱性,这对实验治疗具有潜在影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc2/10448214/a1728cecd4a4/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验