Suppr超能文献

Impurity-driven simultaneous size and crystallinity control of metal nanoparticles.

作者信息

Shiomi Shohei

机构信息

Kyoto Municipal Institute of Industrial Technology and Culture, Kyoto, Japan.

出版信息

Nanotechnology. 2023 Aug 29;34(46). doi: 10.1088/1361-6528/acf04c.

Abstract

Both the size and crystallinity should be optimized for practical applications utilizing metallic nanoparticles because they strongly influence the nanoparticles property. Herein a liquid phase chemical reduction method controls the defects (crystallinity) in metallic Cu nanoparticles simply and easily. Although the addition of an impurity substance, which cannot be thermodynamically alloyed with Cu, reduces the crystallinity of synthesized Cu nanoparticles, it also affects the deposition behavior, and consequently, the nanoparticle size changes unexpectedly. Therefore, a precise control of the synthesis condition is required to synthesize the nanoparticles having optimal size and crystallinity. To clarify the nanoparticle formation mechanism in an impurity-containing solution, the catalytic activity of the reductant and the redox potential change due to the metastable product are electrochemically evaluated to reveal the correlation between nanoparticle formation behavior and synthesis condition. Finally, the synthesis of two types of Cu nanoparticles, which have similar sizes but different crystallinities is demonstrated. This simple nanomaterial design approach to control the crystallinity and the interpretation of the deposition process in an impurity-containing condition should be widely applicable to metallic nanoparticle syntheses.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验