Prabhakaran Venkateshkumar, Strange Lyndi, Kalsar Rajib, Marina Olga A, Upadhyay Piyush, Joshi Vineet V
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
Sci Rep. 2023 Aug 15;13(1):13250. doi: 10.1038/s41598-023-39961-2.
Developing strategies to prevent corrosion at the interface of dissimilar metal alloys is challenging because of the presence of heterogenous distribution of galvanic couples and microstructural features that significantly change the corrosion rate. Devising strategies to mitigate this interfacial corrosion requires quantitative and correlative understanding of its surface electrochemical reaction. In this work, scanning electrochemical cell impedance microscopy (SECCIM) was employed to study location-specific corrosion in the interfacial region of dissimilar alloys, such as AZ31 (magnesium alloy) and DP590 (steel) welded using the Friction-stir Assisted Scribe Technique (FAST) processes. Herein, SECCM and SECCIM were used to perform correlative mapping of the local electrochemical impedance spectroscopic and potentiodynamic polarization to measure the effect of electronic and microstructural changes in the welded interfacial region on corrosion kinetics. Microstructural characterization including scanning electron microscopy and electron backscatter diffraction was performed to correlate changes in microstructural features and chemistry with the corresponding electronic properties that affect corrosion behavior. The variations in corrosion potential, corrosion current density, and electrochemical impedance spectroscopy behavior across the interface provide deeper insights on the interfacial region-which is chemically and microstructurally distinct from both bare AZ31 and DP590 that can help prevent corrosion in dissimilar metal structures.
由于存在显著改变腐蚀速率的电偶异质分布和微观结构特征,制定防止不同金属合金界面腐蚀的策略具有挑战性。设计减轻这种界面腐蚀的策略需要对其表面电化学反应进行定量和相关的理解。在这项工作中,采用扫描电化学池阻抗显微镜(SECCIM)研究了采用搅拌摩擦辅助划线技术(FAST)焊接的不同合金(如AZ31镁合金和DP590钢)界面区域的特定位置腐蚀。在此,使用扫描电化学池显微镜(SECCM)和扫描电化学池阻抗显微镜(SECCIM)对局部电化学阻抗谱和动电位极化进行相关映射,以测量焊接界面区域电子和微观结构变化对腐蚀动力学的影响。进行了包括扫描电子显微镜和电子背散射衍射在内的微观结构表征,以将微观结构特征和化学成分的变化与影响腐蚀行为的相应电子特性相关联。整个界面上腐蚀电位、腐蚀电流密度和电化学阻抗谱行为的变化为界面区域提供了更深入的见解,该区域在化学和微观结构上与裸露的AZ31和DP590均不同,这有助于防止不同金属结构中的腐蚀。