Zhang Fan, Ilavsky Jan, Lindwall Greta, Stoudt Mark R, Levine Lyle E, Allen Andrew J
Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60559, USA.
Appl Sci (Basel). 2021;11(18). doi: 10.3390/app11188643.
Inconel 625, a nickel-based superalloy, has drawn much attention in the emerging field of additive manufacturing (AM) because of its excellent weldability and resistance to hot cracking. The extreme processing condition of AM often introduces enormous residual stress (hundreds of MPa to GPa) in the as-fabricated parts, which requires stress-relief heat treatment to remove or reduce the internal stresses. Typical residual stress heat treatment for AM Inconel 625, conducted at 800 °C or 870 °C, introduces a substantial precipitation of the δ phase, a deleterious intermetallic phase. In this work, we used synchrotron-based in situ scattering and diffraction methods and ex situ electron microscopy to investigate the solid-state transformation of an AM Inconel 625 at 700 °C. Our results show that while the δ phase still precipitates from the matrix at this temperature, its precipitation rate and size at a given time are both smaller when compared with their counterparts during typical heat treatment temperatures of 800 °C and 870 °C. A comparison with thermodynamic modeling predictions elucidates these experimental findings. Our work provides the rigorous microstructural kinetics data required to explore the feasibility of a promising lower-temperature stress-relief heat treatment for AM Inconel 625. The combined methodology is readily extendable to investigate the solid-state transformation of other AM alloys.
因科镍合金625是一种镍基高温合金,由于其出色的可焊性和抗热裂性,在增材制造(AM)这一新兴领域备受关注。增材制造的极端加工条件常常会在制造后的零件中引入巨大的残余应力(数百兆帕至吉帕),这就需要进行消除应力热处理来消除或降低内应力。对增材制造的因科镍合金625进行的典型残余应力热处理在800℃或870℃下进行,会导致大量有害金属间相δ相析出。在这项工作中,我们使用基于同步加速器的原位散射和衍射方法以及非原位电子显微镜来研究增材制造的因科镍合金625在700℃下的固态转变。我们的结果表明,虽然在这个温度下δ相仍会从基体中析出,但与在800℃和870℃的典型热处理温度下相比,其在给定时间的析出速率和尺寸都更小。与热力学模型预测结果的比较阐明了这些实验发现。我们的工作提供了探索一种有前景的低温消除应力热处理对增材制造的因科镍合金625可行性所需的严格微观结构动力学数据。这种组合方法很容易扩展用于研究其他增材制造合金的固态转变。