Suppr超能文献

血液恶性肿瘤的下一代测序技术和新兴技术的进展。

Advances in next-generation sequencing and emerging technologies for hematologic malignancies.

机构信息

Department of Laboratory Medicine and Pathology, University of Washington, Seattle.

Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA; Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle.

出版信息

Haematologica. 2024 Feb 1;109(2):379-387. doi: 10.3324/haematol.2022.282442.

Abstract

Innovations in molecular diagnostics have often evolved through the study of hematologic malignancies. Examples include the pioneering characterization of the Philadelphia chromosome by cytogenetics in the 1970s, the implementation of polymerase chain reaction for high-sensitivity detection and monitoring of mutations and, most recently, targeted next- generation sequencing to drive the prognostic and therapeutic assessment of leukemia. Hematologists and hematopath- ologists have continued to advance in the past decade with new innovations improving the type, amount, and quality of data generated for each molecule of nucleic acid. In this review article, we touch on these new developments and discuss their implications for diagnostics in hematopoietic malignancies. We review advances in sequencing platforms and library preparation chemistry that can lead to faster turnaround times, novel sequencing techniques, the development of mobile laboratories with implications for worldwide benefits, the current status of sample types, improvements to quality and reference materials, bioinformatic pipelines, and the integration of machine learning and artificial intelligence into mol- ecular diagnostic tools for hematologic malignancies.

摘要

分子诊断学的创新通常是通过研究血液系统恶性肿瘤而发展起来的。例如,20 世纪 70 年代通过细胞遗传学对费城染色体进行了开创性的描述,随后采用聚合酶链反应进行高灵敏度检测和监测突变,最近则采用靶向下一代测序来驱动白血病的预后和治疗评估。在过去十年中,血液学家和血液病理学家不断取得新的进展,新的创新提高了每种核酸分子生成的数据的类型、数量和质量。在这篇综述文章中,我们将讨论这些新的发展及其对血液系统恶性肿瘤诊断的影响。我们回顾了测序平台和文库制备化学方面的进展,这些进展可以带来更快的周转时间、新型测序技术、具有全球效益的移动实验室的发展、当前样本类型的状况、对质量和参考材料的改进、生物信息学管道,以及机器学习和人工智能与血液恶性肿瘤分子诊断工具的整合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdfd/10828783/c9793c4f838f/109379.fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验