Suppr超能文献

基于交叉视图生成的部分多视图表示学习

Partial Multiview Representation Learning With Cross-View Generation.

作者信息

Dong Wenbo, Sun Shiliang

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Dec;35(12):17239-17253. doi: 10.1109/TNNLS.2023.3300977. Epub 2024 Dec 2.

Abstract

Multiview learning has made significant progress in recent years. However, an implicit assumption is that multiview data are complete, which is often contrary to practical applications. Due to human or data acquisition equipment errors, what we actually get is partial multiview data, which existing multiview algorithms are limited to processing. Modeling complex dependencies between views in terms of consistency and complementarity remains challenging, especially in partial multiview data scenarios. To address the above issues, this article proposes a deep Gaussian cross-view generation model (named PMvCG), which aims to model views according to the principles of consistency and complementarity and eventually learn the comprehensive representation of partial multiview data. PMvCG can discover cross-view associations by learning view-sharing and view-specific features of different views in the representation space. The missing views can be reconstructed and are applied in turn to further optimize the model. The estimated uncertainty in the model is also considered and integrated into the representation to improve the performance. We design a variational inference and iterative optimization algorithm to solve PMvCG effectively. We conduct comprehensive experiments on multiple real-world datasets to validate the performance of PMvCG. We compare the PMvCG with various methods by applying the learned representation to clustering and classification. We also provide more insightful analysis to explore the PMvCG, such as convergence analysis, parameter sensitivity analysis, and the effect of uncertainty in the representation. The experimental results indicate that PMvCG obtains promising results and surpasses other comparative methods under different experimental settings.

摘要

近年来,多视图学习取得了显著进展。然而,一个隐含的假设是多视图数据是完整的,而这往往与实际应用情况相悖。由于人为或数据采集设备的误差,我们实际得到的是部分多视图数据,现有的多视图算法在处理这类数据时存在局限性。在一致性和互补性方面对视图间的复杂依赖关系进行建模仍然具有挑战性,尤其是在部分多视图数据场景中。为了解决上述问题,本文提出了一种深度高斯跨视图生成模型(名为PMvCG),其旨在根据一致性和互补性原则对视图进行建模,并最终学习部分多视图数据的综合表示。PMvCG可以通过在表示空间中学习不同视图的共享视图和特定视图特征来发现跨视图关联。缺失的视图可以被重建,并依次应用于进一步优化模型。模型中的估计不确定性也会被考虑并整合到表示中以提高性能。我们设计了一种变分推理和迭代优化算法来有效求解PMvCG。我们在多个真实世界数据集上进行了全面实验,以验证PMvCG的性能。通过将学习到的表示应用于聚类和分类,我们将PMvCG与各种方法进行了比较。我们还提供了更有深度的分析来探究PMvCG,例如收敛性分析、参数敏感性分析以及表示中不确定性的影响。实验结果表明,PMvCG取得了良好的结果,并且在不同实验设置下超越了其他对比方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验