Suppr超能文献

基于负样本选择的矩阵分解的二部网络链路预测。

Link prediction on bipartite networks using matrix factorization with negative sample selection.

机构信息

Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan.

International Institute for Zoonosis Control, Division of Bioinformatics, Hokkaido University, Hokkaido, Japan.

出版信息

PLoS One. 2023 Aug 16;18(8):e0289568. doi: 10.1371/journal.pone.0289568. eCollection 2023.

Abstract

We propose a new method for bipartite link prediction using matrix factorization with negative sample selection. Bipartite link prediction is a problem that aims to predict the missing links or relations in a bipartite network. One of the most popular solutions to the problem is via matrix factorization (MF), which performs well but requires reliable information on both absent and present network links as training samples. This, however, is sometimes unavailable since there is no ground truth for absent links. To solve the problem, we propose a technique called negative sample selection, which selects reliable negative training samples using formal concept analysis (FCA) of a given bipartite network in advance of the preceding MF process. We conduct experiments on two hypothetical application scenarios to prove that our joint method outperforms the raw MF-based link prediction method as well as all other previously-proposed unsupervised link prediction methods.

摘要

我们提出了一种新的使用负样本选择的矩阵分解进行二分图链路预测的方法。二分图链路预测是一个旨在预测二分图中缺失链路或关系的问题。解决这个问题的最流行的方法之一是通过矩阵分解(MF),它的性能很好,但需要可靠的信息,无论是缺席和现在的网络链接作为训练样本。然而,这在某些情况下是不可用的,因为不存在缺失链接的真实信息。为了解决这个问题,我们提出了一种称为负样本选择的技术,它使用形式概念分析(FCA)预先选择给定二分图的可靠负训练样本,然后再进行前面的 MF 过程。我们在两个假设的应用场景中进行实验,证明我们的联合方法优于原始基于 MF 的链路预测方法以及所有其他以前提出的无监督链路预测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/872f/10431684/b402fbf98238/pone.0289568.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验