Gao Yifan, Xu Qiaoling, Farooq M Umar, Xian Lede, Huang Li
Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
Nano Lett. 2023 Sep 13;23(17):7921-7926. doi: 10.1021/acs.nanolett.3c01756. Epub 2023 Aug 16.
Moiré superlattices of twisted van der Waals heterostructures provide a promising and tunable platform for simulating correlated two-dimensional physical models. In twisted bilayer transition-metal dichalcogenides with twist angles close to 0°, the Γ and valley moiré bands are described by the honeycomb and the triangular effective lattice models, respectively, with distinct physics. Using large-scale first-principles calculations, we show that in-plane biaxial strain and out-of-plane pressure provide effective knobs for switching the moiré lattice models that emerged at the band edges in twisted bilayer WSe by shifting the energy positions of the Γ and valley minibands. The shifting mechanism originates from the differences in the orbital characters of the Γ and valley states and their responses to strain and pressure. The critical strain and pressure for switching the Γ/ valleys are 2.11% and 2.175 GPa, respectively.
扭曲范德华异质结构的莫尔超晶格为模拟相关二维物理模型提供了一个有前景且可调节的平台。在扭曲角接近0°的扭曲双层过渡金属二硫属化物中,Γ和谷莫尔能带分别由具有不同物理性质的蜂窝状和三角形有效晶格模型描述。通过大规模第一性原理计算,我们表明,面内双轴应变和面外压力通过移动Γ和谷微带的能量位置,为切换扭曲双层WSe中出现在能带边缘的莫尔晶格模型提供了有效的调控手段。这种移动机制源于Γ和谷态的轨道特征差异及其对应变和压力的响应。切换Γ/谷的临界应变和压力分别为2.11%和2.175 GPa。