Xing Minghui, Qiao Zelong, Niu Ziqiang, Wang Shitao, Liu Zhiping, Cao Dapeng
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
ACS Appl Mater Interfaces. 2023 Aug 30;15(34):40428-40437. doi: 10.1021/acsami.3c06602. Epub 2023 Aug 16.
Discovering highly efficient and stable non-precious metal catalysts for the oxygen evolution reaction (OER) is crucial for energy conversion in water splitting. However, preparing high-performance OER catalysts and elucidating the structural changes in the process are still challenging. Herein, we synthesize the NiTe/NiP heterostructure and demonstrate the strain engineering of NiTe/NiP via the lattice incompatibility between the phosphide and the telluride. The strain engineering of the NiTe/NiP heterostructure not only significantly boosts the OER activity but also effectively stabilizes the intrinsic structure of the catalyst after the OER process by using the -produced metal salt as a protection layer. After the OER stability test, no oxyhydroxide phase is observed, and Raman spectroscopy reveals that a voltage-dependent phase transition appears during the OER, which is different from most previously reported Ni-based catalysts, for which the generation of irreversible NiOOH occurs after the OER. Density functional theory calculations further reveal that the tensile strain of NiP will inhibit the presence of irreversible phase transitions of NiP into NiOOH due to the weak adsorption ability of the oxygen species caused by strain engineering. In short, this work opens a new gate for using strain nanotechnology to design high-performance OER catalysts.
发现用于析氧反应(OER)的高效且稳定的非贵金属催化剂对于水分解中的能量转换至关重要。然而,制备高性能的OER催化剂并阐明该过程中的结构变化仍然具有挑战性。在此,我们合成了NiTe/NiP异质结构,并通过磷化物和碲化物之间的晶格不相容性证明了NiTe/NiP的应变工程。NiTe/NiP异质结构的应变工程不仅显著提高了OER活性,而且通过使用生成的金属盐作为保护层,有效地稳定了OER过程后催化剂的固有结构。经过OER稳定性测试,未观察到氢氧化物相,拉曼光谱显示在OER过程中出现了电压依赖性相变,这与大多数先前报道的镍基催化剂不同,对于这些催化剂,OER后会发生不可逆的NiOOH生成。密度泛函理论计算进一步表明,由于应变工程导致的氧物种吸附能力较弱,NiP的拉伸应变将抑制NiP向NiOOH的不可逆相变的存在。简而言之,这项工作为利用应变纳米技术设计高性能OER催化剂打开了一扇新的大门。