College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China.
School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China.
Ecotoxicol Environ Saf. 2023 Sep 15;263:115333. doi: 10.1016/j.ecoenv.2023.115333. Epub 2023 Aug 14.
Emerging alternatives to perfluorooctane sulfonate (PFOS), including 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) and p-perfluorous nonenoxybenzene sulfonate (OBS), have been widely detected in the real environment as PFOS restriction. However, the toxicity in plants and the underlying mechanism of F-53B and OBS remain scarce, especially compared to PFOS. PFOS and their emerging alternatives pose significant potential risks to food, especially for crops, safety and human health with the great convenience of high chemical stability. Germination toxicity, oxidative stress biomarkers, and metabolomics were used to compare the relative magnitudes of toxicity of PFOS and its alternatives in wheat (Triticum aestivum L.). PFOS, F-53B, and OBS inhibited wheat germination compared to the control group, with germination inhibition rates of 45.6%, 53.5%, and 64.3% at 400 μM PFOS, F-53B, and OBS exposure, respectively. Moreover, oxidative stress biomarker changes were observed in PFOS, F-53B, and OBS, with OBS being more pronounced. The chlorophyll concentrations in wheat shoots increased, and the anthocyanin concentration decreased along with the increased exposure concentration. Superoxide dismutase (SOD) activity increased in wheat root but decreased in the shoot. Peroxidase (POD) activity and malondialdehyde (MDA) concentration increased, whereas catalase (CAT) activity decreased. Regarding metabolomics, PFOS, F-53B, and OBS exposure (10 μM) significantly altered 85, 133, and 134 metabolites, respectively. According to KEGG enrichment analysis, F-53B specifically affects lipid metabolism, whereas OBS causes an imbalance in amino acid and carbohydrate metabolism. These findings suggested that PFOS, F-53B, and OBS have distinct toxic mechanisms. Thus, our results indicated that the relative size of the toxicity in wheat is as follows: OBS > F-53B > PFOS, and this finding provides a new reference basis for the phytotoxicity assessment of F-53B and OBS.
全氟辛烷磺酸 (PFOS) 的替代品,包括 6:2 氯代聚全氟醚磺酸 (F-53B) 和对全氟壬氧基苯磺酸 (OBS),已在实际环境中广泛检出,以限制 PFOS 的使用。然而,与 PFOS 相比,F-53B 和 OBS 在植物中的毒性及其潜在机制仍知之甚少。PFOS 及其替代品对食品,尤其是对作物的安全性以及人类健康构成了重大潜在风险,这主要是由于其具有高度的化学稳定性。为了比较 PFOS 及其替代品在小麦中的相对毒性大小,采用发芽毒性、氧化应激生物标志物和代谢组学进行了研究。与对照组相比,PFOS、F-53B 和 OBS 均抑制了小麦的发芽,在 400 μM PFOS、F-53B 和 OBS 暴露下,发芽抑制率分别为 45.6%、53.5%和 64.3%。此外,在 PFOS、F-53B 和 OBS 处理下,观察到氧化应激生物标志物发生了变化,其中 OBS 更为明显。小麦地上部的叶绿素浓度增加,而随着暴露浓度的增加,花青素浓度降低。小麦根部的超氧化物歧化酶 (SOD) 活性增加,但地上部的 SOD 活性降低。过氧化物酶 (POD) 活性和丙二醛 (MDA) 浓度增加,而过氧化氢酶 (CAT) 活性降低。关于代谢组学,PFOS、F-53B 和 OBS 暴露 (10 μM) 分别显著改变了 85、133 和 134 种代谢物。根据 KEGG 富集分析,F-53B 特异性影响脂质代谢,而 OBS 导致氨基酸和碳水化合物代谢失衡。这些结果表明,PFOS、F-53B 和 OBS 具有不同的毒性机制。因此,我们的研究结果表明,小麦中各物质毒性的相对大小如下:OBS > F-53B > PFOS,这一发现为 F-53B 和 OBS 的植物毒性评估提供了新的参考依据。