Suppr超能文献

复用:一种从超低采样 MRI 快速进行全脑高分辨率髓鞘分数映射的深度神经网络方法。

REUSED: A deep neural network method for rapid whole-brain high-resolution myelin water fraction mapping from extremely under-sampled MRI.

机构信息

Magnetic Resonance Physics of Aging and Dementia Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.

Yale School of Medicine, New Haven, CT 06510, USA.

出版信息

Comput Med Imaging Graph. 2023 Sep;108:102282. doi: 10.1016/j.compmedimag.2023.102282. Epub 2023 Aug 2.

Abstract

Changes in myelination are a cardinal feature of brain development and the pathophysiology of several central nervous system diseases, including multiple sclerosis and dementias. Advanced magnetic resonance imaging (MRI) methods have been developed to probe myelin content through the measurement of myelin water fraction (MWF). However, the prolonged data acquisition and post-processing times of current MWF mapping methods pose substantial hurdles to their clinical implementation. Recently, fast steady-state MRI sequences have been implemented to produce high-spatial resolution whole-brain MWF mapping within ∼20 min. Despite the subsequent significant advances in the inversion algorithm to derive MWF maps from steady-state MRI, the high-dimensional nature of such inversion does not permit further reduction of the acquisition time by data under-sampling. In this work, we present an unprecedented reduction in the computation (∼30 s) and the acquisition time (∼7 min) required for whole-brain high-resolution MWF mapping through a new Neural Network (NN)-based approach, named NN-Relaxometry of Extremely Under-SamplEd Data (NN-REUSED). Our analyses demonstrate virtually similar accuracy and precision in derived MWF values using NN-REUSED compared to results derived from the fully sampled reference method. The reduction in the acquisition and computation times represents a breakthrough toward clinically practical MWF mapping.

摘要

髓鞘形成的改变是大脑发育和几种中枢神经系统疾病(包括多发性硬化症和痴呆症)病理生理学的主要特征。先进的磁共振成像(MRI)方法已经被开发出来,通过测量髓鞘水分数(MWF)来探测髓鞘含量。然而,当前 MWF 映射方法的数据采集和后处理时间较长,对其临床应用构成了实质性障碍。最近,快速稳态 MRI 序列已经被用于在大约 20 分钟内生成高空间分辨率的全脑 MWF 映射。尽管随后在从稳态 MRI 中得出 MWF 图的反演算法方面取得了重大进展,但这种反演的高维性质不允许通过数据欠采样进一步减少采集时间。在这项工作中,我们通过一种新的基于神经网络(NN)的方法,即神经网络极度欠采样数据弛豫定量(NN-REUSED),在全脑高分辨率 MWF 映射所需的计算(30 秒)和采集时间(7 分钟)方面取得了前所未有的减少。我们的分析表明,使用 NN-REUSED 得出的 MWF 值在准确性和精密度方面与完全采样参考方法得出的结果几乎相同。采集和计算时间的减少代表了朝着临床实用的 MWF 映射迈出的突破性进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7eb7/10528830/97f77b1e9b6e/nihms-1924186-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验