Department of Plant Physiology and Molecular Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, H-1117, Hungary.
J Plant Physiol. 2023 Sep;288:154059. doi: 10.1016/j.jplph.2023.154059. Epub 2023 Jul 31.
Iron (Fe) is an essential element for photosynthetic organisms, required for several vital biological functions. Photosynthesis, which takes place in the chloroplasts of higher plants, is the major Fe consumer. Although the components of the root Fe uptake system in dicotyledonous and monocotyledonous plants have been extensively studied, the Fe transport mechanisms of chloroplasts in these two groups of plants have received little attention. This review focuses on the comparative analysis of Fe transport processes in the evolutionary ancestors of chloroplasts (cyanobacteria) with the processes in embryophytes and green algae (Viridiplantae). The aim is to summarize how chloroplasts are integrated into cellular Fe homeostasis and how Fe transporters and Fe transport mechanisms have been modified by evolution.
铁(Fe)是光合生物必需的元素,需要参与几个重要的生物学功能。光合作用发生在高等植物的叶绿体中,是主要的 Fe 消耗过程。尽管已对双子叶植物和单子叶植物的根 Fe 吸收系统的组成部分进行了广泛研究,但这两组植物的叶绿体 Fe 转运机制却很少受到关注。本综述重点比较分析叶绿体进化祖先(蓝藻)中的 Fe 转运过程与真核藻类(绿藻门)中的过程。目的是总结叶绿体如何整合到细胞 Fe 稳态中,以及 Fe 转运蛋白和 Fe 转运机制如何通过进化进行修饰。