Department Radiology, University of Missouri Columbia, Columbia, Missouri, USA.
Chemical and Biomedical Engineering, University of Missouri Columbia, Columbia, Missouri, USA.
NMR Biomed. 2023 Dec;36(12):e5021. doi: 10.1002/nbm.5021. Epub 2023 Aug 16.
While B shimming is an important requirement for in vivo brain spectroscopy, for single voxel spectroscopy (SVS), the role for advanced shim methods has been questioned. Specifically, with the small spatial dimensions of the voxel, the extent to which inhomogeneities higher than second order exist and the ability of higher order shims to correct them is controversial. To assess this, we acquired SVS from two loci of neurophysiological interest, the rostral prefrontal cortex (rPFC; 8 cc) and hippocampus (Hc; 9 cc). The rPFC voxel was placed using SUsceptibility Managed Optimization (SUMO) and an initial B map that covers the entire cerebrum to cerebellum. In each location, we compared map-based shimming (Bolero) with projection-based shimming (FAST(EST)MAP). We also compared vendor-provided spherical harmonic first- and second-order shims with additional third- and fourth-order shim hardware. The 7T SVS acquisition used stimulated echo acquisition mode (STEAM) TR/TM/TE of 6 s/20 ms/8 ms, a tissue water acquisition for concentration reference, and LCModel for spectral analysis. In the rPFC (n = 7 subjects), Bolero shimming with first- and second-order shims reduced the residual inhomogeneity from 9.8 ± 4.5 Hz with FAST(EST)MAP to 6.5 ± 2.0 Hz. The addition of third- and fourth-order shims further reduced to 4.0 ± 0.8 Hz. In the Hc (n = 7 subjects), FAST(EST)MAP, Bolero with first- and second-order shims, and Bolero with first- to fourth-order shims achieved values of 8.6 ± 1.9, 5.6 ± 1.0, and 4.6 ± 0.9 Hz, respectively. The spectral linewidth, , was estimated with a Voigt lineshape using and T2 = 130 ms. significantly correlated with the Cramer-Rao lower bounds and concentrations of several metabolites, including glutamate and glutamine in the rPFC. In both loci, if the B distribution is well described by a Gaussian model, the variance of the metabolite concentrations is reduced, consistent with the LCModel fit based on a unimodal lineshape. Overall, the use of the high order and map-based B shim methods improved the accuracy and consistency of spectroscopic data.
虽然 B 匀场是体内脑波谱学的重要要求,但对于单体素波谱学 (SVS),高级匀场方法的作用一直存在争议。具体来说,由于体素的空间尺寸较小,二阶以上的不均匀性的存在程度以及高阶匀场方法纠正它们的能力存在争议。为了评估这一点,我们从两个神经生理学感兴趣的位置采集了 SVS,额前皮质 (rPFC; 8 cc) 和海马体 (Hc; 9 cc)。rPFC 体素使用 Susceptibility Managed Optimization (SUMO) 和涵盖整个大脑到小脑的初始 B 图进行放置。在每个位置,我们比较了基于图谱的匀场 (Bolero) 和基于投影的匀场 (FAST(EST)MAP)。我们还比较了供应商提供的球形谐波一阶和二阶匀场硬件与额外的三阶和四阶匀场硬件。7T SVS 采集使用激发回波采集模式 (STEAM) TR/TM/TE 为 6 s/20 ms/8 ms、组织水采集用于浓度参考以及 LCModel 用于光谱分析。在 rPFC(n=7 名受试者)中,使用一阶和二阶匀场的 Bolero 匀场将 FAST(EST)MAP 的残余不均匀性从 9.8±4.5 Hz 降低至 6.5±2.0 Hz。添加三阶和四阶匀场进一步将 降低至 4.0±0.8 Hz。在 Hc(n=7 名受试者)中,FAST(EST)MAP、具有一阶和二阶匀场的 Bolero 以及具有一阶至四阶匀场的 Bolero 分别实现了 8.6±1.9、5.6±1.0 和 4.6±0.9 Hz 的 值。线宽 ,使用 和 T2=130 ms 使用 Voigt 线形状进行估计。 与 rPFC 中的谷氨酸和谷氨酰胺等几种代谢物的 Cramer-Rao 下限和浓度显著相关。在两个位置,如果 B 分布由高斯模型很好地描述,则代谢物浓度的方差减小,这与基于单峰线形状的 LCModel 拟合一致。总体而言,使用高阶和基于图谱的 B 匀场方法提高了波谱数据的准确性和一致性。