Suppr超能文献

基于无锚点暹罗网络的带有Transformer的RGB-T跟踪器

Anchor free based Siamese network tracker with transformer for RGB-T tracking.

作者信息

Fan Liangsong, Kim Pyeoungkee

机构信息

Silla University, 140, Baekyang-daero 700beon-gil, Sasang-gu, 46958, Busan, Korea.

Jilin Institute of Chemical Technology, No. 45 Chengde Street, Jilin City, 132022, Jilin Province, China.

出版信息

Sci Rep. 2023 Aug 16;13(1):13294. doi: 10.1038/s41598-023-39978-7.

Abstract

In recent years, many RGB-THERMAL tracking methods have been proposed to meet the needs of single object tracking under different conditions. However, these trackers are based on ANCHOR-BASED algorithms and feature cross-correlation operations, making it difficult to improve the success rate of target tracking. We propose a siamAFTS tracking network, which is based on ANCHOR-FREE and utilizes a fully convolutional training network with a Transformer module, suitable for RGB-THERMAL target tracking. This model addresses the issue of low success rate in current mainstream algorithms. We also incorporate channel and channel spatial attention modules into the network to reduce background interference on predicted bounding boxes. Unlike current ANCHOR-BASED trackers such as MANET, DAPNet, SGT, and ADNet, the proposed framework eliminates the use of anchor points, avoiding the challenges of anchor hyperparameter tuning and reducing human intervention. Through repeated experiments on three datasets, we ultimately demonstrate the improved success rate of target tracking achieved by our proposed tracking network.

摘要

近年来,为满足不同条件下单目标跟踪的需求,人们提出了许多RGB-热红外跟踪方法。然而,这些跟踪器基于基于锚点的算法和特征互相关操作,使得提高目标跟踪的成功率变得困难。我们提出了一种siamAFTS跟踪网络,它基于无锚点,并利用带有Transformer模块的全卷积训练网络,适用于RGB-热红外目标跟踪。该模型解决了当前主流算法中成功率低的问题。我们还将通道和通道空间注意力模块融入网络,以减少背景对预测边界框的干扰。与当前基于锚点的跟踪器如MANET、DAPNet、SGT和ADNet不同,所提出的框架消除了锚点的使用,避免了锚点超参数调整的挑战并减少了人工干预。通过在三个数据集上的反复实验,我们最终证明了所提出的跟踪网络在目标跟踪成功率方面的提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7689/10432516/961ba059145e/41598_2023_39978_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验