Suppr超能文献

通过神经网络对混合纳米流体进行不可逆性分析以优化太阳能集热器

Irreversibility analysis through neural networking of the hybrid nanofluid for the solar collector optimization.

作者信息

Alharbi Sayer Obaid, Gul Taza, Khan Ilyas, Khan Mohd Shakir, Alzahrani Saleh

机构信息

Mathematics Department, College of Science Al-Zulfi, Majmaah University, 11952, Majmaah, Saudi Arabia.

Department of Mathematics, City University of Science and Information Technology, Peshawar, 25000, Pakistan.

出版信息

Sci Rep. 2023 Aug 16;13(1):13350. doi: 10.1038/s41598-023-40519-5.

Abstract

Advanced techniques are used to enhance the efficiency of the energy assets and maximize the appliance efficiency of the main resources. In this view, in this study, the focus is paid to the solar collector to cover thermal radiation through optimization and enhance the performance of the solar panel. Hybrid nanofluids (HNFs) consist of a base liquid glycol (CHO) in which nanoparticles of copper (Cu) and aluminum oxide (AlO) are doped as fillers. The flow of the stagnation point is considered in the presence of the Riga plate. The state of the solar thermal system is termed viva stagnation to control the additional heating through the flow variation in the collector loop. The inclusion of entropy generation and Bejan number formation are primarily conceived under the influence of physical parameters for energy optimization. The computational analysis is carried out utilizing the control volume finite element method (CVFEM), and Runge-Kutta 4 (RK-4) methods. (FEATool Multiphysics) software has been used to find the solution through (CVFEM). The results are further validated through a machine learning neural networking procedure, wherein the heat transfer rate is greatly upgraded with a variation of the nanoparticle's volume fraction. We expect this improvement to progress the stability of heat transfer in the solar power system.

摘要

先进技术用于提高能源资产的效率,并使主要资源的设备效率最大化。从这个角度来看,在本研究中,重点关注太阳能集热器,通过优化来覆盖热辐射并提高太阳能板的性能。混合纳米流体(HNFs)由基础液体乙二醇(CHO)组成,其中掺杂了铜(Cu)和氧化铝(AlO)的纳米颗粒作为填料。在里加板存在的情况下考虑驻点流动。太阳能热系统的状态被称为动态驻点,以通过集热器回路中的流量变化来控制额外加热。熵产生和贝扬数形成的纳入主要是在能量优化的物理参数影响下构思的。使用控制体积有限元方法(CVFEM)和龙格 - 库塔4(RK - 4)方法进行计算分析。通过(FEATool Multiphysics)软件使用(CVFEM)来找到解决方案。结果通过机器学习神经网络程序进一步验证,其中随着纳米颗粒体积分数的变化,传热速率大大提高。我们期望这种改进能够提高太阳能系统中传热的稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0275/10432567/7b2c5b968757/41598_2023_40519_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验