Rajukkannu Shankar, Bunpheng Wasurat, Dhairiyasamy Ratchagaraja, Gopinath V
Department of Electrical and Electronics Engineering, Kongunadu College of Engineering and Technology, Trichy, Tamil Nadu, India.
Faculty of Engineering and Technology, Shinawatra University, Sam Khok, Thailand.
Sci Rep. 2025 Jan 4;15(1):833. doi: 10.1038/s41598-025-85374-8.
This study investigates the enhancement of solar cell efficiency using nanofluid cooling systems, focusing on citrate-stabilized and PVP-stabilized silver nanoparticles. Traditional silicon-based and perovskite solar cells were examined to assess the impact of these nanofluids on efficiency improvement and thermal management. A Central Composite Design (CCD) was employed to vary nanoparticle concentration (0.2-0.8 wt%), coolant flow rate (0.5-1.5 L/min), and solar irradiance (800-1000 W/m²). Efficiency improvements were measured using Ordinary Least Squares (OLS) regression. The experimental setup integrated nanofluid cooling systems with the solar cells, facilitating efficient heat dissipation. Results showed significant efficiency gains: silicon-based cells improved from 15 to 17% with PVP stabilization, and perovskite cells increased from 18 to 21.1%. PVP-stabilized nanofluids exhibited superior thermal conductivity (0.7 W/m K) and lower thermal resistance (0.008 K/W) compared to citrate-stabilized nanofluids, leading to notable reductions in operating temperatures. For silicon cells, temperatures dropped from 50 °C to 40 °C with PVP, and for perovskite cells, from 55 °C to 40 °C. Response Surface Methodology (RSM) identified optimal conditions for maximum efficiency improvement at 0.8 wt% nanoparticle concentration and 1.5 L/min flow rate. These findings underscore the potential of PVP-stabilized nanofluids in enhancing solar cell performance and longevity. Future research should refine the experimental design, increase sample size, and explore other nanoparticle types and stabilization methods to optimize solar cell efficiency and thermal management. This study contributes to the broader goal of promoting the widespread adoption of solar energy as a sustainable alternative to conventional energy sources.
本研究探讨了使用纳米流体冷却系统提高太阳能电池效率的方法,重点关注柠檬酸盐稳定化和聚乙烯吡咯烷酮(PVP)稳定化的银纳米颗粒。对传统的硅基和钙钛矿太阳能电池进行了检测,以评估这些纳米流体对效率提升和热管理的影响。采用中心复合设计(CCD)来改变纳米颗粒浓度(0.2 - 0.8 wt%)、冷却剂流速(0.5 - 1.5 L/min)和太阳辐照度(800 - 1000 W/m²)。使用普通最小二乘法(OLS)回归测量效率提升情况。实验装置将纳米流体冷却系统与太阳能电池集成在一起,便于高效散热。结果显示效率有显著提高:PVP稳定化的硅基电池效率从15%提高到了17%,钙钛矿电池从18%提高到了21.1%。与柠檬酸盐稳定化的纳米流体相比,PVP稳定化的纳米流体表现出更高的热导率(0.7 W/m K)和更低的热阻(0.008 K/W),从而使工作温度显著降低。对于硅电池,使用PVP时温度从50°C降至40°C,对于钙钛矿电池,从55°C降至40°C。响应面方法(RSM)确定了在纳米颗粒浓度为0.8 wt%和流速为1.5 L/min时实现最大效率提升的最佳条件。这些发现突出了PVP稳定化纳米流体在提高太阳能电池性能和寿命方面的潜力。未来的研究应优化实验设计、增加样本量,并探索其他纳米颗粒类型和稳定化方法,以优化太阳能电池效率和热管理。本研究有助于推动太阳能作为传统能源可持续替代品的广泛应用这一更广泛的目标。