Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, 140, Rue de la Physique, 38402, Saint Martin d'Héres, France.
School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow, G12 8QQ, UK.
Biomech Model Mechanobiol. 2023 Dec;22(6):1901-1917. doi: 10.1007/s10237-023-01742-1. Epub 2023 Aug 17.
In this work we address the role of the microstructural properties of a vascularised poroelastic material, characterised by the coupling between a poroelastic matrix and a viscous fluid vessels network, on its overall response in terms of pressures, velocities and stress maps. We embrace the recently developed model (Penta and Merodio in Meccanica 52(14):3321-3343, 2017) as a theoretical starting point and present the results obtained by solving the full interplay between the microscale, represented by the intervessels' distance, and the macroscale, representing the size of the overall tissue. We encode the influence of the vessels' density and the poroelastic matrix compressibility in the poroelastic coefficients of the model, which are obtained by solving appropriate periodic cell problem at the microscale. The double-poroelastic model (Penta and Merodio 2017) is then solved at the macroscale in the context of vascular tumours, for different values of vessels' walls permeability. The results clearly indicate that improving the compressibility of the matrix and decreasing the vessels' density enhances the transvascular pressure difference and hence transport of fluid and drug within a tumour mass after a transient time. Our results suggest to combine vessel and interstitial normalization in tumours to allow for better drug delivery into the lesions.
在这项工作中,我们研究了血管多孔弹性材料的微观结构特性在压力、速度和应力图等整体响应方面的作用,这种材料的特点是多孔弹性基质和粘性流体血管网络的耦合。我们采用了最近提出的模型(Penta 和 Merodio 在 Meccanica 52(14):3321-3343, 2017)作为理论起点,并通过求解微尺度(由血管间距离表示)和宏观尺度(表示整个组织的大小)之间的全相互作用,得到了结果。我们通过在微尺度上求解适当的周期单元问题,将血管密度和多孔弹性基质压缩性的影响编码到模型的多孔弹性系数中。然后,在血管肿瘤的背景下,针对不同的血管壁渗透性值,在宏观尺度上求解双多孔弹性模型(Penta 和 Merodio 2017)。结果清楚地表明,提高基质的可压缩性和降低血管密度可以提高跨血管的压力差,从而在瞬态时间后增加肿瘤内的流体和药物的传输。我们的结果表明,在肿瘤中结合血管和间质归一化可以允许更好地将药物输送到病变部位。