Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Nature. 2023 Sep;621(7978):282-288. doi: 10.1038/s41586-023-06396-8. Epub 2023 Aug 16.
Although high-entropy materials are excellent candidates for a range of functional materials, their formation traditionally requires high-temperature synthetic procedures of over 1,000 °C and complex processing techniques such as hot rolling. One route to address the extreme synthetic requirements for high-entropy materials should involve the design of crystal structures with ionic bonding networks and low cohesive energies. Here we develop room-temperature-solution (20 °C) and low-temperature-solution (80 °C) synthesis procedures for a new class of metal halide perovskite high-entropy semiconductor (HES) single crystals. Due to the soft, ionic lattice nature of metal halide perovskites, these HES single crystals are designed on the cubic CsMCl (M=Zr, Sn, Te, Hf, Re, Os, Ir or Pt) vacancy-ordered double-perovskite structure from the self-assembly of stabilized complexes in multi-element inks, namely free Cs cations and five or six different isolated [MCl] anionic octahedral molecules well-mixed in strong hydrochloric acid. The resulting single-phase single crystals span two HES families of five and six elements occupying the M-site as a random alloy in near-equimolar ratios, with the overall CsMCl crystal structure and stoichiometry maintained. The incorporation of various [MCl] octahedral molecular orbitals disordered across high-entropy five- and six-element CsMCl single crystals produces complex vibrational and electronic structures with energy transfer interactions between the confined exciton states of the five or six different isolated octahedral molecules.
尽管高熵材料是一系列功能材料的优秀候选材料,但它们的形成传统上需要 1000°C 以上的高温合成程序和复杂的加工技术,如热轧。解决高熵材料极端合成要求的一种途径应该涉及设计具有离子键网络和低内聚能的晶体结构。在这里,我们开发了一种新的金属卤化物钙钛矿高熵半导体(HES)单晶的室温溶液(20°C)和低温溶液(80°C)合成工艺。由于金属卤化物钙钛矿具有柔软的离子晶格性质,这些 HES 单晶是通过在多元素墨水中自组装稳定配合物设计的,即自由 Cs 阳离子和五个或六个不同的孤立 [MCl] 阴离子八面体分子在强盐酸中充分混合,设计基于立方 CsMCl(M=Zr、Sn、Te、Hf、Re、Os、Ir 或 Pt)空位有序双钙钛矿结构。所得单相单晶跨越了五个和六个元素的两个 HES 家族,以近等摩尔比随机合金形式占据 M 位,同时保持 CsMCl 晶体结构和化学计量比不变。各种 [MCl] 八面体分子轨道的掺入导致高熵五元和六元 CsMCl 单晶的复杂振动和电子结构,其中包含的五个或六个不同孤立八面体分子的受限激子态之间存在能量转移相互作用。