Zhu Cheng, Jin Jianbo, Gao Mengyu, Oddo Alexander M, Folgueras Maria C, Zhang Ye, Lin Chung-Kuan, Yang Peidong
Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
J Am Chem Soc. 2022 Jul 13;144(27):12450-12458. doi: 10.1021/jacs.2c04357. Epub 2022 Jun 30.
The structural diversity and tunable optoelectronic properties of halide perovskites originate from the rich chemistry of the metal halide ionic octahedron [MX] (M = Pb, Sb, Te, Sn, Pt, etc.; X = Cl, Br, and I). The properties of the extended perovskite solids are dictated by the assembly, connectivity, and interaction of these octahedra within the lattice environment. Hence, the ability to manipulate and control the assembly of the octahedral building blocks is paramount for constructing new perovskite materials. Here, we propose a systematic supramolecular strategy for the assembly of [MX] octahedra into a solid extended network. Interaction of alkali metal-bound crown ethers with the [M(IV)X] octahedron resulted in a structurally and optoelectronically tunable "dumbbell" structural unit in solution. Single crystals with diverse packing geometries and symmetries will form as the solid assembly of this new supramolecular building block. This supramolecular assembly route introduces a new general strategy for designing halide perovskite structures with potentially new optoelectronic properties.
卤化物钙钛矿的结构多样性和可调节的光电特性源于金属卤化物离子八面体[MX](M = Pb、Sb、Te、Sn、Pt等;X = Cl、Br和I)丰富的化学性质。扩展钙钛矿固体的性质由这些八面体在晶格环境中的组装、连接性和相互作用所决定。因此,操纵和控制八面体结构单元的组装能力对于构建新型钙钛矿材料至关重要。在此,我们提出一种系统的超分子策略,用于将[MX]八面体组装成固体扩展网络。碱金属结合的冠醚与[M(IV)X]八面体的相互作用在溶液中产生了一种结构和光电性能可调节的“哑铃”结构单元。随着这种新型超分子结构单元的固体组装,将形成具有不同堆积几何形状和对称性的单晶。这种超分子组装途径为设计具有潜在新光电特性的卤化物钙钛矿结构引入了一种新的通用策略。