Institute of Developmental Biology & Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany.
Clinical Lipidomics Unit, Institute of Physiological Chemistry, Medical University Mainz, Mainz, Germany.
BMC Cancer. 2023 Aug 16;23(1):762. doi: 10.1186/s12885-023-11271-w.
Glioblastoma patients commonly develop resistance to temozolomide chemotherapy. Hypoxia, which supports chemotherapy resistance, favors the expansion of glioblastoma stem cells (GSC), contributing to tumor relapse. Because of a deregulated sphingolipid metabolism, glioblastoma tissues contain high levels of the pro-survival sphingosine-1-phosphate and low levels of the pro-apoptotic ceramide. The latter can be metabolized to sphingosine-1-phosphate by sphingosine kinase (SK) 1 that is overexpressed in glioblastoma. The small molecule SKI-II inhibits SK and dihydroceramide desaturase 1, which converts dihydroceramide to ceramide. We previously reported that SKI-II combined with temozolomide induces caspase-dependent cell death, preceded by dihydrosphingolipids accumulation and autophagy in normoxia. In the present study, we investigated the effects of a low-dose combination of temozolomide and SKI-II under normoxia and hypoxia in glioblastoma cells and patient-derived GCSs.
Drug synergism was analyzed with the Chou-Talalay Combination Index method. Dose-effect curves of each drug were determined with the Sulforhodamine B colorimetric assay. Cell death mechanisms and autophagy were analyzed by immunofluorescence, flow cytometry and western blot; sphingolipid metabolism alterations by mass spectrometry and gene expression analysis. GSCs self-renewal capacity was determined using extreme limiting dilution assays and invasion of glioblastoma cells using a 3D spheroid model.
Temozolomide resistance of glioblastoma cells was increased under hypoxia. However, combination of temozolomide (48 µM) with SKI-II (2.66 µM) synergistically inhibited glioblastoma cell growth and potentiated glioblastoma cell death relative to single treatments under hypoxia. This low-dose combination did not induce dihydrosphingolipids accumulation, but a decrease in ceramide and its metabolites. It induced oxidative and endoplasmic reticulum stress and triggered caspase-independent cell death. It impaired the self-renewal capacity of temozolomide-resistant GSCs, especially under hypoxia. Furthermore, it decreased invasion of glioblastoma cell spheroids.
This in vitro study provides novel insights on the links between sphingolipid metabolism and invasion, a hallmark of cancer, and cancer stem cells, key drivers of cancer. It demonstrates the therapeutic potential of approaches that combine modulation of sphingolipid metabolism with first-line agent temozolomide in overcoming tumor growth and relapse by reducing hypoxia-induced resistance to chemotherapy and by targeting both differentiated and stem glioblastoma cells.
胶质母细胞瘤患者通常对替莫唑胺化疗产生耐药性。支持化疗耐药的缺氧有利于胶质母细胞瘤干细胞(GSC)的扩增,导致肿瘤复发。由于鞘脂代谢失调,胶质母细胞瘤组织含有高水平的促生存鞘氨醇-1-磷酸和低水平的促凋亡神经酰胺。后者可以被鞘氨醇激酶(SK)1 代谢为鞘氨醇-1-磷酸,而 SK1 在胶质母细胞瘤中过度表达。小分子 SKI-II 抑制 SK 和二氢神经酰胺去饱和酶 1,后者将二氢神经酰胺转化为神经酰胺。我们之前报道过,SKI-II 联合替莫唑胺在常氧条件下诱导细胞凋亡,伴随着二氢鞘脂的积累和自噬。在本研究中,我们研究了在常氧和缺氧条件下低剂量替莫唑胺和 SKI-II 联合用药对胶质母细胞瘤细胞和患者来源的 GCS 的影响。
用 Chou-Talalay 组合指数法分析药物协同作用。用 Sulforhodamine B 比色法测定各药物的剂量-效应曲线。通过免疫荧光、流式细胞术和 Western blot 分析细胞死亡机制和自噬;通过质谱和基因表达分析研究鞘脂代谢的改变。用极端稀释极限测定法测定 GSCs 的自我更新能力,用 3D 球体模型测定胶质母细胞瘤细胞的侵袭能力。
缺氧时胶质母细胞瘤细胞对替莫唑胺的耐药性增加。然而,与单独治疗相比,替莫唑胺(48 μM)与 SKI-II(2.66 μM)联合用药在缺氧条件下协同抑制胶质母细胞瘤细胞生长并增强胶质母细胞瘤细胞死亡。这种低剂量组合不会诱导二氢鞘脂的积累,但会降低神经酰胺及其代谢物的水平。它诱导氧化应激和内质网应激,并触发 caspase 非依赖性细胞死亡。它削弱了替莫唑胺耐药 GSCs 的自我更新能力,尤其是在缺氧条件下。此外,它还降低了胶质母细胞瘤细胞球体的侵袭能力。
本体外研究提供了关于鞘脂代谢与侵袭之间联系的新见解,侵袭是癌症的一个标志,也是癌症干细胞的关键驱动因素,癌症干细胞是癌症生长和复发的关键。它证明了结合鞘脂代谢调节与一线药物替莫唑胺的治疗方法具有潜在的治疗效果,通过降低缺氧诱导的化疗耐药性和靶向分化和干细胞胶质母细胞瘤细胞,减少肿瘤生长和复发。