University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Neurourol Urodyn. 2023 Nov;42(8):1839-1848. doi: 10.1002/nau.25267. Epub 2023 Aug 17.
Interstitial cystitis and bladder pain syndrome (IC/BPS) presents with symptoms of debilitating bladder pain and is typically a diagnosis of exclusion. The cystoscopic detection of Hunner's lesions increases the likelihood of detecting tissue inflammation on bladder biopsy and increases the odds of therapeutic success with anti-inflammatory drugs. However, the identification of this subgroup remains challenging with the current lack of surrogate biomarkers of IC/BPS. On the path towards identifying biomarkers of IC/BPS, we modeled the dynamic evolution of inflammation in an experimental IC/BPS rodent model using computational biological network analysis of inflammatory mediators (cytokines and chemokines) released into urine. The use of biological network analysis allows us to identify urinary proteins that could be drivers of inflammation and could therefore serve as therapeutic targets for the treatment of IC/BPS.
Rats subjected to cyclophosphamide (CYP) injection (150 mg/kg) were used as an experimental model for acute IC/BPS (n = 8). Urine from each void was collected from the rats over a 12-h period and was assayed for 13 inflammatory mediators using Luminex™. Time-interval principal component analysis (TI-PCA) and dynamic network analysis (DyNA), two biological network algorithms, were used to identify biomarkers of inflammation characteristic of IC/BPS over time.
Compared to vehicle-treated rats, nearly all inflammatory mediators were elevated significantly (p < 0.05) in the urine of CYP treated rats. TI-PCA highlighted that GRO-KC, IL-5, IL-18, and MCP-1 account for the greatest variance in the inflammatory response. At early time points, DyNA indicated a positive correlation between IL-4 and IL-1β and between TNF-α and IL-1β. Analysis of TI-PCA and DyNA at later time points showed the emergence of IL-5, IL-6, and IFNγ as additional key mediators of inflammation. Furthermore, DyNA network complexity rose and fell before peaking at 9.5 h following CYP treatment. This pattern of inflammation may mimic the fluctuating severity of inflammation associated with IC/BPS flares.
Computational analysis of inflammation networks in experimental IC/BPS analysis expands on the previously accepted inflammatory signatures of IC by adding IL-5, IL-18, and MCP-1 to the prior studies implicating IL-6 and GRO as IC/BPS biomarkers. This analysis supports a complex evolution of inflammatory networks suggestive of the rise and fall of inflammation characteristic of IC/BPS flares.
间质性膀胱炎和膀胱疼痛综合征(IC/BPS)表现为使人虚弱的膀胱疼痛症状,通常是一种排除性诊断。膀胱镜检查发现 Hunner 病变会增加膀胱活检中发现组织炎症的可能性,并增加使用抗炎药治疗成功的几率。然而,由于目前缺乏 IC/BPS 的替代生物标志物,因此仍然难以识别这一亚组。在寻找 IC/BPS 生物标志物的过程中,我们使用计算生物网络分析(炎症介质(细胞因子和趋化因子)释放到尿液中)对实验性 IC/BPS 啮齿动物模型中的炎症进行动态演变建模。生物网络分析的使用使我们能够识别出可能是炎症驱动因素的尿液蛋白,因此可以作为治疗 IC/BPS 的治疗靶点。
对接受环磷酰胺(CYP)注射(150mg/kg)的大鼠进行实验性 IC/BPS(n=8)模型。在 12 小时的时间内,从大鼠每次排空的尿液中收集尿液,并使用 Luminex 测定 13 种炎症介质。时间间隔主成分分析(TI-PCA)和动态网络分析(DyNA)两种生物网络算法用于随时间识别出 IC/BPS 炎症的特征性生物标志物。
与对照组相比,CYP 治疗组大鼠的尿液中几乎所有炎症介质均显著升高(p<0.05)。TI-PCA 突出显示 GRO-KC、IL-5、IL-18 和 MCP-1 是炎症反应中最大的变量。在早期时间点,DyNA 表明 IL-4 和 IL-1β 之间以及 TNF-α 和 IL-1β 之间存在正相关。对 TI-PCA 和 DyNA 的后期分析表明,IL-5、IL-6 和 IFNγ 是炎症的另外关键介质。此外,DyNA 网络复杂性在 CYP 治疗后 9.5 小时达到峰值之前先上升后下降。这种炎症模式可能模拟了与 IC/BPS 发作相关的炎症严重程度波动。
对实验性 IC/BPS 分析中的炎症网络进行计算分析,通过将 IL-5、IL-18 和 MCP-1 添加到先前研究中涉及 IL-6 和 GRO 的 IC/BPS 生物标志物中,扩展了之前接受的 IC 炎症特征。该分析支持炎症网络复杂演变的支持,表明 IC/BPS 发作特征的炎症上升和下降。