Suppr超能文献

将贝叶斯模型链与马尔可夫融合相结合。

Combining chains of Bayesian models with Markov melding.

作者信息

Manderson Andrew A, Goudie Robert J B

机构信息

MRC Biostatistics Unit, University of Cambridge, United Kingdom, and The Alan Turing Institute.

MRC Biostatistics Unit, University of Cambridge, United Kingdom.

出版信息

Bayesian Anal. 2022 Jan 1;18(3):807-840. doi: 10.1214/22-BA1327.

Abstract

A challenge for practitioners of Bayesian inference is specifying a model that incorporates multiple relevant, heterogeneous data sets. It may be easier to instead specify distinct submodels for each source of data, then join the submodels together. We consider chains of submodels, where submodels directly relate to their neighbours via common quantities which may be parameters or deterministic functions thereof. We propose , an extension of Markov melding, a generic method to combine chains of submodels into a joint model. One challenge we address is appropriately capturing the prior dependence between common quantities within a submodel, whilst also reconciling differences in priors for the same common quantity between two adjacent submodels. Estimating the posterior of the resulting overall joint model is also challenging, so we describe a sampler that uses the chain structure to incorporate information contained in the submodels in multiple stages, possibly in parallel. We demonstrate our methodology using two examples. The first example considers an ecological integrated population model, where multiple data sets are required to accurately estimate population immigration and reproduction rates. We also consider a joint longitudinal and time-to-event model with uncertain, submodel-derived event times. Chained Markov melding is a conceptually appealing approach to integrating submodels in these settings.

摘要

贝叶斯推理的从业者面临的一个挑战是指定一个包含多个相关的、异质数据集的模型。相反,为每个数据源指定不同的子模型,然后将这些子模型结合起来可能会更容易。我们考虑子模型链,其中子模型通过可能是参数或其确定性函数的公共量与其相邻子模型直接相关。我们提出了一种扩展的马尔可夫融合方法,这是一种将子模型链组合成联合模型的通用方法。我们要解决的一个挑战是适当地捕捉子模型中公共量之间的先验依赖性,同时也要协调两个相邻子模型中相同公共量的先验差异。估计所得总体联合模型的后验分布也具有挑战性,因此我们描述了一种采样器,该采样器使用链结构在多个阶段(可能并行)纳入子模型中包含的信息。我们用两个例子展示了我们的方法。第一个例子考虑一个生态综合种群模型,其中需要多个数据集来准确估计种群迁移和繁殖率。我们还考虑一个联合纵向和事件发生时间模型,其事件时间由子模型得出且不确定。在这些情况下,链式马尔可夫融合是一种在概念上很有吸引力的子模型整合方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d54c/7614958/eeba04128c66/EMS152034-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验