Wu Kun-Lin, Bretherton Ross C, Davis Jennifer, DeForest Cole A
Department of Chemical Engineering, University of Washington (UW) Seattle WA 98105 USA
Department of Bioengineering, UW Seattle WA 98105 USA.
RSC Adv. 2023 Aug 15;13(35):24487-24490. doi: 10.1039/d3ra04046a. eCollection 2023 Aug 11.
The extracellular matrix (ECM) undergoes constant physiochemical change. User-programmable biomaterials afford exciting opportunities to study such dynamic processes . Herein, we introduce a protein-polymer hydrogel whose stiffness can be pharmacologically and reversibly regulated with conventional antibiotics. Specifically, a coumermycin-mediated homodimerization of gel-tethered DNA gyrase subunit B (GyrB) creates physical crosslinking and a rheological increase in hydrogel mechanics, while competitive displacement of coumermycin with novobiocin returns the material to its softened state. These unique platforms could potentially be modulated and are expected to prove useful in elucidating the effects of ECM-presented mechanical signals on cell function.
细胞外基质(ECM)经历着持续的物理化学变化。用户可编程生物材料为研究此类动态过程提供了令人兴奋的机会。在此,我们介绍一种蛋白质-聚合物水凝胶,其硬度可通过传统抗生素进行药理学可逆调节。具体而言,香豆霉素介导的凝胶连接的DNA促旋酶亚基B(GyrB)的同二聚化产生物理交联并使水凝胶力学性能发生流变学增加,而新生霉素对香豆霉素的竞争性置换使材料恢复到其软化状态。这些独特的平台可能受到调节,并有望在阐明ECM呈现的机械信号对细胞功能的影响方面证明是有用的。