Suppr超能文献

制备和改性下一代水凝胶生物材料的化学与生物工程策略

Chemical and Biological Engineering Strategies to Make and Modify Next-Generation Hydrogel Biomaterials.

作者信息

Gharios Ryan, Francis Ryan M, DeForest Cole A

机构信息

Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA.

Department of Bioengineering, University of Washington, Seattle WA 98105, USA.

出版信息

Matter. 2023 Dec 6;6(12):4195-4244. doi: 10.1016/j.matt.2023.10.012. Epub 2023 Nov 2.

Abstract

There is a growing interest in the development of technologies to probe and direct in vitro cellular function for fundamental organoid and stem cell biology, functional tissue and metabolic engineering, and biotherapeutic formulation. Recapitulating many critical aspects of the native cellular niche, hydrogel biomaterials have proven to be a defining platform technology in this space, catapulting biological investigation from traditional two-dimensional (2D) culture into the 3D world. Seeking to better emulate the dynamic heterogeneity characteristic of all living tissues, global efforts over the last several years have centered around upgrading hydrogel design from relatively simple and static architectures into stimuli-responsive and spatiotemporally evolvable niches. Towards this end, advances from traditionally disparate fields including bioorthogonal click chemistry, chemoenzymatic synthesis, and DNA nanotechnology have been co-opted and integrated to construct 4D-tunable systems that undergo preprogrammed functional changes in response to user-defined inputs. In this Review, we highlight how advances in synthetic, semisynthetic, and bio-based chemistries have played a critical role in the triggered creation and customization of next-generation hydrogel biomaterials. We also chart how these advances stand to energize the translational pipeline of hydrogels from bench to market and close with an outlook on outstanding opportunities and challenges that lay ahead.

摘要

对于开发用于探测和指导体外细胞功能的技术,人们的兴趣日益浓厚,这些技术可用于基础类器官和干细胞生物学、功能性组织和代谢工程以及生物治疗制剂。水凝胶生物材料能够重现天然细胞微环境的许多关键方面,已被证明是该领域的一项决定性平台技术,将生物学研究从传统的二维(2D)培养推进到了三维世界。为了更好地模拟所有活组织的动态异质性特征,过去几年全球范围内的努力主要集中在将水凝胶设计从相对简单和静态的结构升级为刺激响应性和时空可演化的微环境。为此,来自传统上不同领域(包括生物正交点击化学、化学酶促合成和DNA纳米技术)的进展已被采用并整合,以构建4D可调系统,该系统可根据用户定义的输入进行预编程的功能变化。在本综述中,我们强调了合成化学、半合成化学和生物基化学的进展如何在触发创建和定制下一代水凝胶生物材料方面发挥了关键作用。我们还阐述了这些进展如何推动水凝胶从实验室到市场的转化进程,并展望了未来的突出机遇和挑战。

相似文献

4
Cell-laden hydrogels for osteochondral and cartilage tissue engineering.用于骨软骨和软骨组织工程的载细胞水凝胶。
Acta Biomater. 2017 Jul 15;57:1-25. doi: 10.1016/j.actbio.2017.01.036. Epub 2017 Jan 11.
6
Bioresponsive DNA Hydrogels: Beyond the Conventional Stimuli Responsiveness.生物响应性 DNA 水凝胶:超越传统刺激响应性。
Acc Chem Res. 2017 Apr 18;50(4):733-739. doi: 10.1021/acs.accounts.6b00581. Epub 2017 Feb 10.
8
Development of hydrogels for regenerative engineering.用于再生工程的水凝胶的开发。
Biotechnol J. 2017 May;12(5). doi: 10.1002/biot.201600394. Epub 2017 Feb 21.

引用本文的文献

9
Engineered Protein Hydrogels as Biomimetic Cellular Scaffolds.工程化蛋白水凝胶作为仿生细胞支架。
Adv Mater. 2024 Nov;36(45):e2407794. doi: 10.1002/adma.202407794. Epub 2024 Sep 5.

本文引用的文献

2
Pharmacological regulation of protein-polymer hydrogel stiffness.蛋白质-聚合物水凝胶硬度的药理学调控
RSC Adv. 2023 Aug 15;13(35):24487-24490. doi: 10.1039/d3ra04046a. eCollection 2023 Aug 11.
4
Factors Affecting Success of New Drug Clinical Trials.影响新药临床试验成功的因素。
Ther Innov Regul Sci. 2023 Jul;57(4):737-750. doi: 10.1007/s43441-023-00509-1. Epub 2023 May 11.
6
Embracing complexity in biomaterials design.在生物材料设计中接纳复杂性。
Biomater Biosyst. 2022 Feb 7;6:100039. doi: 10.1016/j.bbiosy.2022.100039. eCollection 2022 Jun.
9
Embracing Simplicity in Biomaterials Design.在生物材料设计中崇尚简约。
Biomater Biosyst. 2022 Jun;6. doi: 10.1016/j.bbiosy.2022.100043. Epub 2022 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验