Suppr超能文献

通过增强风化的直接实测影响,改善美国中西部的净碳预算。

Improved net carbon budgets in the US Midwest through direct measured impacts of enhanced weathering.

机构信息

Institute for Sustainability, Energy, and Environment, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

出版信息

Glob Chang Biol. 2023 Dec;29(24):7012-7028. doi: 10.1111/gcb.16903. Epub 2023 Aug 17.

Abstract

Terrestrial enhanced weathering (EW) through the application of Mg- or Ca-rich rock dust to soil is a negative emission technology with the potential to address impacts of climate change. The effectiveness of EW was tested over 4 years by spreading ground basalt (50 t ha  year ) on maize/soybean and miscanthus cropping systems in the Midwest US. The major elements of the carbon budget were quantified through measurements of eddy covariance, soil carbon flux, and biomass. The movement of Mg and Ca to deep soil, released by weathering, balanced by a corresponding alkalinity flux, was used to measure the drawdown of CO , where the release of cations from basalt was measured as the ratio of rare earth elements to base cations in the applied rock dust and in the surface soil. Basalt application stimulated peak biomass and net primary production in both cropping systems and caused a small but significant stimulation of soil respiration. Net ecosystem carbon balance (NECB) was strongly negative for maize/soybean (-199 to -453 g C m  year ) indicating this system was losing carbon to the atmosphere. Average EW (102 g C m  year ) offset carbon loss in the maize/soybean by 23%-42%. NECB of miscanthus was positive (63-129 g C m  year ), indicating carbon gain in the system, and EW greatly increased inorganic carbon storage by an additional 234 g C m  year . Our analysis indicates a co-deployment of a perennial biofuel crop (miscanthus) with EW leads to major wins-increased harvested yields of 29%-42% with additional carbon dioxide removal (CDR) of 8.6 t CO  ha  year . EW applied to maize/soybean drives a CDR of 3.7 t CO  ha  year , which partially offsets well-established carbon losses from soil from this crop rotation. EW applied in the US Midwest creates measurable improvements to the carbon budgets perennial bioenergy crops and conventional row crops.

摘要

通过在土壤中施加富含镁或钙的岩石粉尘来进行陆地增强风化(EW)是一种负排放技术,具有应对气候变化影响的潜力。在美国中西部,通过在玉米/大豆和芒草种植系统中散布玄武岩(50 吨/公顷/年),对 EW 的有效性进行了 4 年的测试。通过涡度相关、土壤碳通量和生物量测量来量化碳预算的主要元素。通过风化释放的镁和钙向深层土壤的迁移,以及相应的碱度通量的平衡,用来衡量 CO 的消耗,玄武岩中阳离子的释放通过应用岩石粉尘和表层土壤中稀土元素与基础阳离子的比例来衡量。玄武岩的应用刺激了两种种植系统的生物量和净初级生产力峰值,并导致土壤呼吸的小但显著的刺激。玉米/大豆系统的净生态系统碳平衡(NECB)为强烈负值(-199 至-453 g C m 年),表明该系统正在向大气释放碳。平均 EW(102 g C m 年)抵消了玉米/大豆系统中 23%-42%的碳损失。芒草的 NECB 为正值(63-129 g C m 年),表明系统中碳的积累,EW 还额外增加了 234 g C m 年的无机碳储量。我们的分析表明,多年生生物燃料作物(芒草)与 EW 的共同部署会带来重大收益——增加 29%-42%的收获产量,同时额外去除 8.6 t CO 公顷 年的二氧化碳。EW 应用于玉米/大豆会带来 3.7 t CO 公顷 年的 CDR,部分抵消了该作物轮作从土壤中固有的碳损失。在美国中西部应用 EW 会对多年生生物能源作物和传统行作物的碳预算产生可衡量的改善。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验